How scalable is the capacity of (electronic) IP routers?

Nick McKeown

Professor of Electrical Engineering and Computer Science, Stanford University

nickm@stanford.edu http://www.stanford.edu/~nickm

Why ask the question?

Widely held assumption:
Electronic IP routers will not keep up with link capacity.

Background:

Router Capacity = (number of lines) \times (line-rate)

- Biggest router capacity 4 years ago ~= 10Gb/s
- Biggest router capacity 2 years ago ~= 40Gb/s
- Biggest router capacity today ~= 160Gb/s
- Next couple of generations: ~1-40Tb/s

Why it's hard for capacity to keep up with link rates

Why it's hard for capacity to keep up with link rates

Packet processing Power

Link Speed

Source: SPEC95Int & David Miller, Stanford.

Instructions per packet

What limits a router's capacity?

Limited by memory random access time

It's a packet switch:

Must be able to buffer every packet for an unpredictable amount of time.

Limited by memory random access time

Hop-by-hop routing:

Once per ~1000bits it must index into a forwarding table with ~100k entries.

- [Optional QoS support
 - Very complex per-packet processing]

What really limits the capacity?

- At first glance: the random access time to memory.
- In fact, this can be solved by more parallelism (replication and pipelining).
- Dilemma: But parallelism requires more power and space.

What really limits the capacity?

Suggestion:

- Don't assume optics will oust CMOS in IP routers because of increased system capacity.
- It *might* oust CMOS because of reduced (power x space) for a given capacity.

Outline

- · A brief history of IP routers
- Where they will go next
 - Incorporating optics into routers
 - More parallelism (with or without optics)

First Generation Routers

Typically <0.5Gb/s aggregate capacity

First Generation Routers

Queueing Structure: Centralized Shared Memory

Second Generation Routers

Typically <5Gb/s aggregate capacity

Second Generation Routers

Queueing Structure: Combined Input and Output Queueing

Third Generation Routers

Typically <50Gb/s aggregate capacity

Third Generation Routers Queueing Structure

Third Generation Routers

- Size-constrained: 19" or 23" wide.
- Power-constrained.

Complex linecards

Fourth Generation Routers/Switches

Optics inside a router for the first time

0.3 - 10Tb/s routers in development

Where next?

- Incorporating (more) optics into a router.
- More parallelism (with or without optics).

Incorporating optics into a router

- Replacing the switch fabric with an optical datapath.
- Increasing the internal "cell" size to reduce rate of arbitration and reconfiguration.

Replacing the switch fabric with optics

Typical IP Router Linecard

Typical IP Router Linecard

Replacing the switch fabric with optics

- Most common internal "cell" size is 64 bytes (50ns @ OC192, 12ns @ OC768)
- Too fast for arbitration
- Too fast for reconfiguration
- What we'll see:
 - Increased cell length
 - E.g. switch bursts of cells
 - But less efficient.

More parallelism

- Parallel packet buffers
- Parallel lookup tables

Multiple parallel routers

The building blocks we'd like to use:

Why this might be a good idea

- Larger overall capacity
- Faster line rates
- Redundancy
- Familiarity
 - "After all, this is how the Internet is built"

Multiple parallel routers

Load Balancing architectures

Method #1: Random packet loadbalancing

Method: As packets arrive they are randomly distributed, packet by packet over each router.

Advantages:

- Almost unlimited capacity
- Load-balancer is simple
- Load-balancer needs no packet buffering

Disadvantages:

- Random fluctuations in traffic ⇒ each router is loaded differently
 - Packets within a flow may become mis-sequenced
 - · It is not possible to predict the system performance

Method #2: Random flow loadbalancing

Method: Each new flow (e.g. TCP connection) is randomly assigned to a router. All packets in a flow follow the same path.

Advantages:

- Almost unlimited capacity
- Load-balancer is simple (e.g. hashing of flow ID).
- Load-balancer needs no packet buffering.
- No mis-sequencing of packets within a flow.

Disadvantages:

 Random fluctuations in traffic ⇒ each router is loaded differently

It is not possible to predict the system performance

Observations

- Random load-balancing: It's hard to predict system performance.
- Flow-by-flow load-balancing: Worst-case performance is very poor.

If designers, system builders, network operators etc. need to know the worst case performance, random load-balancing will not suffice.

Method #3: Intelligent packet load-balancing

Goal: Each new packet is carefully assigned to a router so that:

- Packets are not mis-sequenced.
- The throughput is maximized and understood.
- Delay of each packet can be controlled.

We call this "Parallel Packet Switching"

Method #3: Intelligent packet loadbalancing

Parallel Packet Switching

31

Parallel Packet Switching

Advantages

- Single-stage of buffering
- No excess link capacity
- $k\uparrow$ ⇒ power per subsystem \downarrow
- k↑ ⇒ memory bandwidth ↓
- k↑ ⇒ lookup rate ↓

Precise Emulation of a Shared Memory Switch

Parallel Packet Switch Theorem

1. If $S > 2k/(k+2) \cong 2$ then a parallel packet switch can *precisely* emulate a FCFS shared memory switch for all traffic.

Example of an IP Router with Parallel Packet Switching

Overall capacity 160Tb/s

My conclusions

- The capacity of electronic IP routers will scale a long way yet.
- The opportunity of optics is to reduce power and space
 - By using optics within the router.
 - By replacing routers with circuit switches.