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Abstract

As classroom sizes grow, instructor workload also increases. Despite innovations in tech-
nology to scale education, little has been done to improve upon the most critical compo-
nent of student learning: unsupervised work on assignments. In computer science educa-
tion, learning process—the way in which students design, debug, and explore programming
assignments—is instrumental to performance and mastery. Yet few studies have defined
assignment-centric metrics to measure learning process, much less design systems that trans-
form the way we think about unsupervised work today.

My work explores how to improve student assignment work so that both the teacher and
learner benefit. While many tools analyze only a student’s final submission, I focus on a
paradigm to collect in-depth snapshots of in-progress student work. I first discuss the com-
plexity of characterizing progress on a programming assignment with an abstraction called
milestones, and I show how we can use machine learning methods to visualize how students
work through an open-ended graphics-based assignment. Next, I present a tool, Pensieve,
which organizes snapshots of student work so that teachers see a student’s problem-solving
approach. This tool facilitates sit-down student-teacher conversations, where teachers can
give more in-depth feedback to each individual student. Thirdly, I present TMOSS, a tool
to detect excessive collaboration—that is, when a student heavily relies on peer or online
resources—at any point during unsupervised work on an assignment. For both Pensieve and
TMOSS, I discuss pedagogical and cultural impacts on students as well as the classroom at
large.

This work points to a new paradigm for supporting learners and a path forward for de-
signing new types of assignments that enhance the student experience. I close by discussing
a graduating networking classroom project to reproduce existing research, which prepares

students for research and industry careers in networking.
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Chapter 1

Introduction

Technology is transforming the way we think about education. Worldwide, the enrollment
in tertiary education has more than doubled since 2000 [4], and undergraduate classrooms
across the United States now include electronic clickers, online class forums and submission
systems, and video-streamed lecture recordings.

Computer Science (CS) as a field of study has grown tremendously in the past decade;
the number of CS majors declared in United States institutions has more than tripled since
2006 [3]. The subsequent boom in tools supporting these classrooms can be explained with
three observations pertaining to this surge in university computer science education. The
first is that programming literacy is widely regarded as essential for job marketability [1, 35];
many students are likely to take at least one CS course in their undergraduate study, even
if they do not major in CS [3]. Second, the quantitative nature of CS lends itself easily
to computer-assisted assessment, course organization, and classroom management systems.
And third, the growth of teaching and tenure-track faculty numbers in the field has risen
by only 50% and 20%, respectively, which has resulted in soaring student-teacher ratios
and high management overhead. These three trends make the instructor’s job much more
difficult: instructors must maintain the quality of education despite burgeoning classroom
sizes, even when the student body grows more diverse.

The majority of new technologies that instructors are using forgo the latter objective of
teaching different students in favor of the former objective of teaching many students. Many
classroom tools broadcast teaching to many students at once—e.g., creating short lecture
videos, developing fully autogradable programming assignments, and answering questions

on online student forums. However, simply expediting these student-teacher transactions
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does not improve the student learning experience. For example, while Massive Open Online
Courses (MOOCs) and fully online higher degree programs have the potential to reach
millions of students, the learning outcomes in such programs pale in comparison to in-
person classrooms [60, 80]. It is unclear whether the multitude of tools in our classrooms is
creating a disjointed learning experience that seeks only to deliver course material efficiently,
rather than to teach students effectively.

This dissertation focuses on a critical component of student learning: wunsupervised
work—that is, working on weekly assignments without explicit instructor guidance. With
the current paradigm shift from traditional, paper-based lecture classrooms to paperless,
interactive ones, instructors have more data on students and can consequently give better,
more specific feedback. However, instructor evaluation of unsupervised work is often still
based solely on final submissions. The instructor today has limited understanding of a stu-
dent’s learning process, defined in this work as a student’s activities during unsupervised
work; therefore, despite studied correlations between learning process and student perfor-
mance [23, 79, 171, 185], the instructor cannot give adequate feedback in this dimension.
Furthermore, there is little incentive to adopt new technologies that would drastically change
the existing structure of unsupervised work, as many tool adoptions are costly investments
to an already time- and resource-constrained instructor.

The tools introduced here provide a window into the learning process by collecting not
just a student’s final submission, but also their entire path towards assignment completion.
Compared to prior work, these tools have two characteristics that facilitate their adoption
in today’s CS classrooms: First, they are designed to scale insight into different strategies
of learning across large numbers of students; and second, they support an evolving set of

assignments that cater to a diverse population of learners.

1.1 Tools to facilitate learning

While many tools in computer science education facilitate instruction and enhance learning
inside the classroom, few are designed to fully support the student experience during un-
supervised work outside the classroom. Table 1.1 compares how three different computer
science classrooms use instructional and learning tools. Courses A and B are CS1 (intro-

ductory computer science) courses at an R1 (very high research activity) institution [147]
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Course A [147] Course B [43] Course C [116]

Course Intro to CS (CS1) Intro to CS (CS1) Deep Learning

Institution type R1 Liberal arts R1

# Students 300 120 260
Course organization tools

Pre-recorded lecture videos v

Textbook (v) (V)

Course notes/slides v v v

Online gradebook v v v

Recorded lectures v v

Online class forum v (V) v
Instruction methods

Flipped classroom v

Small-group classroom v v

Pair-programming labs [113] v

Course project v

Office hours v v v
Weekly assignment /feedback tools

Fully autograded v

Human feedback post-submit v v

Extensible assignments v v

Exam grading software [153] v v v

v': Tool used in class; (v'): Tool provided, but not often used.

Table 1.1: Educational tools used in three different university CS courses.

and liberal arts college [43], respectively, and Course C is a graduate course in Deep Learn-
ing [116] based on a Massive Open Online Course (MOOC) [5]. All institutions are located
in the United States.

The target student group for each of these courses influences the instructor’s decision
on which tools to use and how. Because Courses A and B are geared towards students with
no programming experience, they heavily use small-group classrooms for student discus-
sion; Course B goes one step further by limiting lecture sections to 30 students to further
encourage student-instructor interaction. In contrast, Course C is designed for advanced
computer science students and thus uses its flipped classroom design to discuss practical,
real-life applications and techniques during lecture time. Each course’s assignment design
also reflects the respective student learning goals: In Courses A and B, teaching assistants
give detailed human feedback and award extra credit for students who go beyond the base

assignment requirements, while Course C has fully autograded weekly assignments in favor
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Course A [147] Course B [43]

Lecture 2 hours

Small-group discussion 1 hour 2.5 hours!
Programming labs N/A 2 hours
On-task assignment time 10-15 hours 6—8 hours
Office hours 1 hour 1-2 hours
Content review 0-1 hour 1 hour

Total 14-20 hours 12.5-15.5 hours

"Lecture is held in small groups.

Table 1.2: Estimated weekly time (in hours) spent on a course, broken down by activity, in
two CS1 courses in the United States.

of requiring a larger, open-ended, multi-week group project.

Unsupervised assignment work is an integral component of a student’s experience. Table
1.2 shows the breakdown of course commitment time, in hours per week, that a student
invests in Courses A and B, as reported by their respective instructors. Students spend more
than 50% of their time on unsupervised work. This balance is not unique to the two courses
surveyed; unsupervised work is essential to learning because it provides a student-centered,
project-based learning environment [23], where students have a place to experiment, explore,
and make mistakes. Furthermore, assigning the activity requires little additional overhead
as class sizes grow. Nevertheless, the level and detail of feedback on student performance
that instructors can give does not scale well, and it often depends heavily on the assignment’s
original design.

Despite the innovations listed above, the student experience with the assignment itself
has been slow to change. In many classrooms, unsupervised work looks largely the same as
it did a decade ago, with some administrative efficiencies: students receive an assignment
handout, work on the assignment—perhaps with some help from an office hour instructor
and autograder testing—and submit a final solution. Instructors receive a batch of final
submissions, submit all solutions to an autograder, and read through student solutions
to give more in-depth feedback if necessary. This stagnant process contrasts with how
instruction in the classroom has evolved from a lecture-based, passive experience to an
active learning experience rife with peer-to-peer discussion. A student’s unsupervised work
time is still treated as a black box whose output is a single final submission, from which

instructors are expected to derive feedback on the student’s problem-solving process.
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Nevertheless, changing key components of the classroom is a costly investment. For
example, an instructor could spend over 10 hours creating a short, 7-minute pre-recorded
lecture video to replace what may amount to 15 minutes of in-person lecture [157]. When we
design course tools that supplement unsupervised work environments, we must address the
tension between designing engaging projects—that students feel motivated to complete—
and scaling instructor feedback—that reveals in-depth understanding of our students.

Many assignments in introductory courses are designed to be interactive and open-ended.
Breakout, a classic Atari game assignment (Figure 1.1) [118] is used widely in many insti-
tutions across the world [2, 57, 62, 147, 182] because its graphics-based nature appeals both
to novices, who can clearly visualize what they have programmed so far, and to experienced
students, who can extend the assignment solution scope for extra credit. However, the
more open-ended an assignment, the harder it is to scale the grading process. The Break-
out assignment is purposefully designed to be high-level so that students can build their
own project, meaning that it is nearly impossible to design reliable low-level unit tests for
an autograder. Course A includes one such Breakout assignment (discussed more in Section
1.2) and supports students by holding one-on-one, student-teacher conversations reflecting
on the assignment, but it is unclear how valuable these conversations are without insight
into how the student reached their final answer. In advanced CS courses, many assignments
are supported with autograder tests that students can use to continuously evaluate their
work [14, 97, 106], but this restricts assignments to well-scoped, rigid problems. Course C
features a multi-week group project so that students can engage in hands-on deep learning
research—yet how would this research project be scoped for a course in networking, where

many research systems require months to build?

1.2 Understanding the learning process

If we gain a better understanding of how students learn through individual assignment
work, then we can determine when and how to support different strategies of learning. The
amount of unsupervised work will continue to increase as more and more learners enter the
classroom. While it is widely believed that the best method of instruction is one-on-one
tutoring [24], many institutions of higher education simply do not enough human instructors
to adequately support the burgeoning student demand, so unsupervised work will persist

as a key learning activity. With the lofty goal of approximating one-on-one tutoring, one
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Order Milestones

1 Set up bricks

2 Implement mouse tracking of paddle

3 Implement ball animation (bouncing off walls)
4 Implement collision detection and brick removal
5 Finish up (implement win/loss condition)
Optional Extend assignment for extra credit

(a) Website assignment graphic. (b) Suggested feature implementation order in course handout.

Component Description

Assignment # 3 (out of 7). Week 4 of a 10-week course.

Work days 9

Late days Up to 2 extra days with penalty.

Assignment handout  Tips, tricks, and suggested milestone order (as in (b)).
Overview session 2 sessions (1-1.5 hours) within 48 hours of handout upload.
Office hours Walk-in, 5 days a week.

Paired work N/A. Individual work only.

Grading 90% Functionality

10% Programming methodology

(c¢) Assignment components and resources.

Figure 1.1: Breakout, a weekly assignment offered in an undergraduate CS1 course.

component of this dissertation work is to understand the learning process with respect to
unsupervised work in CS courses so that instructors can deliver better feedback to students.

To ground this discussion on learning process, we describe how a particular assignment,
Breakout [141, 147], motivates students to consider the process of problem-solving, and
how the current instructor feedback system fails to evaluate how students work through
the assignment. The Breakout assignment (Figure 1.1) is the third weekly assignment in
Course A [147] and is due right before the course midterm examination. Because this is
the first big programming task that students must complete individually, instructors offer
several guidelines and incentives for success.

To keep students from feeling overwhelmed, the assignment handout presents the Break-
out problem in terms of the key features and suggests an order for achieving assignment
milestones (Figure 1.1b). As soon as the assignment is released, undergraduate teaching
assistants (TAs) hold overview sessions to ensure that students understand the assign-
ment objectives and have the opportunity to ask clarifying questions. While students are

working on the assignment, they can attend drop-in evening office hours where TAs can
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provide debugging help. After final submission, student work is evaluated along two dimen-
sions: functionality—how well the student’s Breakout game operates according to the task
outline—and programming methodology, or style—how well the student code is designed
and written.

For unsupervised work—such as programming Breakout—students may interact with
the assignment material in several ways. Tools for understanding learning process should

acknowledge that students may have different approaches, including but not limited to:

o Planner-oriented progression. Carefully structuring programs over time [162];
e.g., guided by the milestones outlined in the handout, a student planner would tackle

Milestone 2 after successfully debugging and testing Milestone 1.

e Tinkering-oriented exploration. In contrast to goal-oriented progress, a student
tinkerer would program with just-in-time planning and incremental changes [20, 23,
162]

e Floundering and struggling. Haphazard activity that does not result in func-
tional progress; e.g., a student conceptually does not understand animation loops for

animating ball movement and has given up on debugging their current code.

¢ Other assignment-related activities. Programming with the intent of fixing the
formatting of code, variable names, indentation, etc.; e.g., a student who has already
achieved functional success and is instead adding comments, decomposing functions,

and “cleaning up” their submission with respect to the style grade component [22].

It is well-documented that the student’s learning process affects their success on the
specific assignment, as well as their overall course performance [171]. Both planning and
tinkering are activities associated with successful functional progress, defined as progression
towards the assignment’s functional goals (e.g., making a playable Breakout game) [19].
On the other hand, floundering, struggling, and poor time management may lead students
towards plagiarism and excessive collaboration, where they rely heavily on peer or online
code in ways that may violate the institution’s course collaboration policy. If instructors
can identify how students are learning, they can better support different types of productive
learning and deter students from ineffective strategies.

There are many additional benefits to classroom education if instructors can leverage a

deeper understanding of the learning process:
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o Identify overall trends in student learning. Instructors should understand if the
assignment is correctly addressing student learning goals, so that they can adjust the

learning experience both during and after the assignment.

e Give tailored feedback to specific students. Given that teaching resources are
scarce in large classrooms, instructors need to identify which students need additional
assistance or supervision. The degree of help can range from offering autonomous
tools to groups of students (e.g., planners may benefit from software for scaffolding
intermediate planning stages [111]) to recommending in-person, one-on-one instructor

office hours.

o Identify ineffective learning processes. Instructors need to identify when stu-
dents are not learning at all but would benefit from human support over autonomous
tools. For example, instructors should be able to flag students at risk of excessive

collaboration and provide in-person help where needed.

e Train students’ metacognitive skills. Inherent to the process of learning is ob-
serving how students exhibit metacognition, or learning how to learn (discussed more
in Chapter 3). Students who exhibit stronger metacognition are better self-regulated
learners, who can strategize and effectively use classroom resources for their individual
learning goals [151, 160]. If instructors can develop metacognition skills in introduc-
tory computer science students, they can train these students to navigate their own

learning in more advanced courses.

For the Breakout assignment, instructors only scaffold the learning process with a sug-
gested order of functional progress (Figure 1.1b), given before the student starts unsuper-
vised work. There are very few resources for evaluating learning process, as evaluation of
student work is by and large only on final submissions. Instructors assess the final sub-
mission for functionality and programming style; they currently are not equipped to give
feedback on the student’s programming methodology—i.e, how the student approached the
problem, debugged their solution, and followed common programming practices for success.
Furthermore, feedback is an incredibly time-intensive process for instructors; it is important
that any tools designed for this task should encourage students to incorporate this costly

instructor feedback into work on future assignments.
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The challenge to developing classroom tools to understand the learning process is there-
fore two-fold: (1) Identify learning activities so that instructors can give feedback to stu-
dents, and (2) do so without significantly increasing instructor burden. However, existing
research is difficult to translate to tools that instructors can use to provide actionable, scal-
able feedback to students in large classrooms. This is in part because existing research often
characterizes student work patterns using low-level indicators of student progress, such as
code diffs, completion times, or errors [7, 16, 23, 33, 79, 155] (discussed more in Chapter
2). While these measurements are easy to calculate for each student, they do not translate
well into actionable feedback for the student and are not necessarily transferable across
contexts [122, 185]. There has been some successes in modeling learning process and prop-
agating feedback on in-progress student work [126, 127, 169, 177], but the programming
languages in these research studies, albeit Turing-complete, are block-based or variable-
constrained, and they would thus be intractable for more complex, open-ended assignments
like Breakout, much less for any real-world assignments in advanced CS courses.

The main barrier to tractable analysis and modeling student assignment work is one
of data sparsity. For many assignments, the distribution of student abstract code syntax
trees in students’ final submissions follows a Zipf distribution [128, 177], which has two
implications. First, the task of understanding the space of just final submissions is akin to
the task of understanding natural spoken language [123]. Second, while instructors can pre-
dict the most likely solutions for any programming assignment, there is always a non-zero
probability of encountering a completely new submission, for which there is no understand-
ing. In other words, precise, completely autonomous understanding of student assignment
work is intractable; compared to natural language, which has billions of labeled examples,
the number of student submissions is rarely in the millions [87], if not more often in the
hundreds or thousands [126]. This problem is exacerbated if we consider saving snapshots
of student progress; for a 480-student course, the average student programming Breakout
submits a final submission 300 lines in length after about 240 intermediate snapshots of
student work. The solution space is far too large for human instructors to review within
a reasonable timeframe, much less use to develop constructive feedback to students. If we
supplement human feedback with recent data-driven techniques like machine learning (e.g.,
for natural language modeling or image classification), these methods must be adapted to
much smaller—but equally complex—datasets.

The tools in this dissertation are introduced as a first step towards enabling instructors
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in CS classrooms today to give better feedback on all dimensions of learning. These tools
provide a data-driven approach to maximizing the human resources available at an under-
graduate CS institution. With a better understanding of how unsupervised work shapes
different trajectories of student learning, instructors can promote effective, self-regulated
learning among the majority of students, while extending in-person help to students who

need it the most.

1.3 Innovations in assignments

The design of the assignment itself is also critical to understanding how students learn
and is discussed as a second component of this dissertation. To transform the process of
unsupervised work means to reevaluate every facet of the activity: If we are to design tools to
understand the learning process, how can we optimize the underlying learning environment
for our students? The CS assignment creating this learning environment must be designed
to develop student problem-solving skills yet also support scalable grading and feedback,
while providing the students with a meaningful, motivational experience that prepares them
for the role that computing will play in their lives.

In CS1 and CS2 courses around the world, there is a plethora of assignments that fit
these goals. The holy grail of introductory assignments would be one that encourages explo-
ration and tinkering while simultaneously supporting an efficient, fully automatic feedback
pipeline. An increasing number of assignments are designed with this goal in mind [118],
and many others promote friendly competition between students [70, 125, 136, 167]. In
particular, open-ended, graphics-based assignments like Breakout are gaining popularity
due to their ability to equalize the playing field for students with varying programming
backgrounds [44, 70, 147]. For novices, the graphical visualization gives them immediate
feedback on what they have implemented so far; for experienced programmers, the open-
ended nature leaves room for experimentation and exploration beyond the base assignment.
Despite the potential benefits to students, instructors may find these assignments arduous
to grade because of the large space of potential solutions.

In more advanced courses, instructors must design assignments that prepare students for
the experiences that they will face in the field. For introductory courses, assignment goals
are clear: get students excited about computer science, and give assignments that connect

computing to their everyday lives. On the other hand, advanced courses should contain tasks
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that students will inevitably face in engineering and research. As a result, graduate courses
in computing often include a larger, multi-week project with a final report write-up, so
students can develop their technical expertise, ability to manage a project, and presentation
and documentation skills. Designing these projects to be open-ended is perhaps even more
important for advanced students, because as future engineers or academic researchers, their
work will unquestionably venture into uncharted territory. Advanced students can use
these course projects to practice how to navigate the unknown. It is costly for instructors
to invest in relevant, timeless assignments. Not only should the ideal assignment encourage
students to develop and implement a creative solution within a reasonable timeline, but
also instructors should be able to grade it on a consistent scale and support the learning

process with classroom resources.

1.4 Contributions and outline

This dissertation explores how to improve individual, unsupervised work as it exists in
computing education courses today. We present four tools that can be implemented imme-
diately in existing classrooms to understand the learning process and improve education.
The remainder of this dissertation is organized as follows:

In Chapter 2, we introduce the PyramidSnapshot dataset along with the first of our
tools: milestones, a method to identify functional progress on a large dataset of inter-
mediate student submissions. This work is the first to provide a framework for merging
expert knowledge with machine learning image classifiers in order to characterize functional
progress on graphics-based assignments, which are complex but popular in introductory CS
courses. With this method, researchers and instructors alike can understand how students
work through the assignment, from the perspective of the individual student, as well as the
class as an aggregate. The central content of this chapter was originally published in Yan
et al. [180].

In Chapter 3, we present Pensieve, the first of two instructor-facing tools, which visu-
alizes student work over time. Using this tool, instructors can use the learning process to
enhance feedback and student metacognitive development on unsupervised work. We report
preliminary results of how students in an offering of CS1 that used Pensieve performed bet-
ter than one that did use not Pensieve. The content of this chapter was originally published
in Yan et al. [178].
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In Chapter 4, we present TMOSS, our second instructor-facing tool for understanding
the learning process. Many existing tools only work on final submissions of student work;
in contrast, TMOSS can detect when, where, and how excessive collaboration impacts
unsupervised work. Using TMOSS, we were able to identify different student collaboration
patterns and analyze how these patterns correlated with course performance. The content
of this chapter was originally published in Yan et al. [181].

In Chapter 5, we present an assignment designed to improve the graduate networking
student learning experience. The Reproducing Research Results project tasks students with
reproducing key findings in existing networking research, enabling students to experience
a realistic research environment while connecting them with the rest of the networking
community. The content of this chapter was originally published in Yan et al. [179].

Finally, Chapter 6 summarizes the dissertation’s main contributions and describes po-
tential future research directions for supporting learning not only in today’s undergraduate

computing education, but also in the larger space of education.



Chapter 2
Pyramid Milestones

First-time CS students learn by programming—they must design an approach, debug their
code, and iteratively improve towards a final solution. For a teacher, however, a single
timestamped submission per student at the end of this process is insufficient to capture all
the intermediate steps a student has taken towards a solution. While a final submission
gives some indication of how a student designed their solution, it reveals very little about
the attempts and detours that a student may have made along the way.

Consider two students, Student A and Student B, working on a CS1 graphics-based
assignment called Pyramid, where the task is to draw a Pyramid. Both submissions received
full credit; furthermore, a teacher noticed that while Student A achieved only the baseline
Pyramid (Figure 2.1a), Student B went above and beyond, meriting extra credit (Figure
2.1b). However, the final submission is a shallow reflection of the two students’ learning
process. On the midterm exam two weeks later, Student A was a top scorer, whereas
Student B scored among the bottom ten in a class of 500 students. A deep dive into the
students’ work would reveal that after just 14 minutes, Student A had drawn their first
Pyramid shape. In contrast, Student B took 5 hours and 45 minutes to reach the same
milestone and spent over 60% of their total work time debugging compile-time errors.

For CS courses, while it is easy to generate these low-level metrics to demonstrate the
difference between Student A’s and Student B’s learning processes, our teacher will find it
much more difficult to use this information to give Student B actionable feedback on how
they can improve. What would be more meaningful than these statistics is a characterization
of functional progress over the course of a student’s unsupervised work. If snapshots of

student code could be mapped to milestones, or incremental attempts of functional progress

13
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(a) Assignment goal. (b) Extra credit example.

Figure 2.1: Compiled image output of two full-credit student final submissions of the Pyra-
mid assignment by (a) Student A and (b) Student B.

towards the assignment goal, then our teacher can differentiate between—for example—an
on-track student (Figure 2.2a) and a struggling student (Figure 2.2b). Our teacher can then
then discuss with both students their respective approaches in detail, as well as reflect more
broadly on whether the class is adequately prepared to navigate the Pyramid assignment.

The difficulty in understanding functional progress during unsupervised work stems from
the multitude of different solution paths possible. While manually inspecting the functional
progress of two students may be feasible for a human instructor, it is intractable to extend
this type of analysis to all 500 students in the classroom above. Unit testing and other auto-
mated assessment tools are often only designed to test functionality of the final submission,
and teachers would have to design and engineer additional tests for identifying interme-
diate milestones. Existing tools are also difficult to tailor to graphics-based programming
assignments, which have recently gained popularity in many CS1 courses. Due to their
open-ended nature—enabling programmers of all levels to get quick, visual feedback in an
exploratory environment—the large solution spaces often render unit-testing development
or syntax-based code analysis insufficient for final submissions, much less intermediate code
snapshots.

In this chapter, we explore how to automatically characterize functional progress on a
graphics-based assignment, Pyramid. Instead of modeling student code, our scheme uses
only the compiled image outputs of student work to generate milestone labels, which cor-
respond to mutually exclusive steps to success. By focusing only on the compiled image
output of these code snapshots, our task of understanding functional progress becomes an

image classification problem, and we are able to tap into the rich field of computer vision,
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Two row Rectangle Single row Right triangle Perfect

(a) Milestone labels for a series of images from a typical student.

Off-track Column (diagonal) Off-track Off-track Off-track
structure

(b) Milestone labels for a series of images from a struggling student.

Figure 2.2: Two students’ compiled images of functional progress on the Pyramid assign-
ment, annotated with milestone labels.

where machine learning advances have matched [86] and, more recently, surpassed [186]
human ability to detect objects from pixel input. However, to our knowledge, in spite of
their effectiveness, contemporary vision classification techniques have rarely been applied
to student code, as many state-of-the-art techniques are supervised—requiring well-labeled,
plentiful data, which student assignment data often lacks.

Our case study is the Pyramid assignment, a canonical CS1 graphics-based task (Figure
2.1, Appendix A). In order to marry the two fields of CS education research and computer
vision, we devise a tractable way of preparing a labeled dataset—tagging timestamped,
program image output with milestone labels—for supervised machine learning. The Pyra-
midSnapshot dataset contains timestamped, program image output of 2,633 students over
26 CS1 offerings from the same university; 84,127 of 101,636 images of intermediate work
are annotated with one of 16 milestone labels mapping to functional progress. Through
the method introduced in this chapter, not only can we expand our understanding of un-
supervised work, but we also hope to expedite the preparation of new assignment data for
functional progress analysis.

There are three main contributions of this work, which follow after a discussion of related
work in Section 2.1: First, in Section 2.2 we describe an efficient method of using instructor

expert knowledge to quickly characterize functional progress on a large fraction of our



CHAPTER 2. PYRAMID MILESTONES 16

dataset. We supplement these hand-labeled expert data with machine learning techniques
to cover the entire dataset in Section 2.3. Second, in Section 2.4 we show how instructors can
use functional progress to learn more about how different groups of students interact with
the Pyramid assignment. Third, in Section 2.5 we discuss the feasibility of using computer
vision techniques to grade student final submissions. This is a first step in providing scalable
characterization of student progress during unsupervised work, and we published the fully
labeled PyramidSnapshot dataset! created in this work so that researchers can extend our

work to new assignments.

2.1 Related work

There is a growing body of work on automated assessment tools, which are designed to
understand and give feedback to students. Many courses also employ test-driven learning,
where students use a provided set of unit tests or write their own using a system like Web-
CAT [49, 81]. However, unit tests in general are often brittle, time-consuming to develop,
and hard to apply to graphics-based assignments, which allow for variation among correct
solutions. Thus, most contemporary work aims to understand student programs based on
abstract syntax tree (AST) structure [71, 108, 112, 144, 168]. While these approaches work
for short programs with low complexity, Huang et al. found that implementing AST-based
feedback in general is as hard a task as autonomously understanding natural language [72].

To make CS courses more accessible for a diverse set of learners, unsupervised work
should encourage personal approaches to programming [162]. Some programming languages
inherently encourage exploration, such as Scratch [138] and Alice [41]. For text-based pro-
gramming languages, on the other hand, creativity is pushed to the assignments, which are
often open-ended tasks that support visual output [93, 118, 140, 158]. Flexible assignments
support both planner and tinkerer approaches to solving the problem, because such assign-
ments allow strategic planning of milestones and incremental, exploratory steps towards the
solution.

Assignment work patterns are often strong indicators of student performance in the
course [98], the interplay between work and plagiarism [181], and the extent to which stu-

dents are tinkering versus making forward progress [23]. It has been found that a student’s

!Dataset available at http://stanford.edu/~cpiech/pyramidsnapshot/challenge.html.
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interaction with syntax, compile, and runtime errors can be predictors of student perfor-
mance [16, 33, 79, 155]. Ahadi et al. showed that assignment completion times, among other
low-level assignment features, were predictive of exam scores [7], while Piech et al. showed
that functional progress on simple, variable-free assignments can better predict exam per-
formance [127]. In the classroom, Morrison et al. found that encouraging students to label
functional subgoals contributed to better student performance, but such labeling should
be well-monitored by instructors [110, 111]. Understanding functional evolution of student
solutions has been explored for grid-world, simple block based assignments [126, 127, 169].
To our knowledge, our work is the first to explore functionality and student progress for
assignments that use pixel-based graphical output, which are complex and more typical of
computer science learning environments.

We circumvent the difficulty of AST-based functionality analysis by using pizel-based
visual program output. In 2013, a team of researchers from DeepMind demonstrated that
a convolutional neural network-based algorithm could learn to play Atari games as well
as humans using only pixel output [107]. Because the Atari games used in the DeepMind
paper are very similar in complexity to the outputs of assignments typical in CS1 and CS2
classes—and some of the Atari games are in fact classic homework assignments [118]—we
have reason to believe that modern computer vision algorithms should be able to understand
the output of our student’s graphical programs from the pixel level. Despite this potential,
to the best of our knowledge, the capacity for understanding graphics prior to this paper
has been used mostly to play and rarely to educate. Open datasets have been integral to
the early evolution of computer vision techniques [53, 86, 95]; we hope that our contribution

of this dataset will help the CS education community evolve.

2.2 Preparing a dataset

The most effective machine learning classifiers today use supervised learning techniques on
reliable, well-labeled canonical datasets [74, 159]. However, student assignment datasets are
anything but—the biggest challenge to automatic characterization of student unsupervised
work is establishing ground-truth labels. Autograder output and grading rubrics may be
appropriate labels for student final submissions (elaborated further in Section 2.5); however,
when characterizing in-progress student work, such schemes fall short because they are

designed to assess complete submissions, not everything in between. In this section, we
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public void run() {
for(int i = 0; i < BRICKS_IN_BASE; i++) {
// calculate row variables
int nBricks = BRICKS_IN_BASE - i;
int rowWidth = nBricks * BRICK_WIDTH;
double rowY = HEIGHT-(i+1)*BRICK_HEIGHT;
double rowX = (WIDTH - rowWidth)/2.0;
// draw a single row
for(int j = 0; j < mnBricks; j++) {
// add a single brick
double x = rowX + j * BRICK_WIDTH;
rect(x, rowY, BRICK_WIDTH, BRICK_HEIGHT) ;
}
}
}

Figure 2.3: Sample solution code for the Pyramid assignment.

discuss how we transformed student work Pyramid assignment into the PyramidSnapshot
Dataset, a labeled dataset prepared for supervised classification tasks.

The Pyramid assignment is a sub-problem in the second week of a 10-week CS1 course
at Stanford. The assignment is scoped as the students’ first exposure to variables, object
manipulation, and for-loop indexing. As part of their individual, take-home assignment,
students use Java’s ACM graphics library [142] to draw bricks on the screen and construct
a pyramid shape, and they are awarded extra credit points if they can extend the correct
pyramid. A teacher solution including nested loops and computation of several intermediate
variables is shown in Figure 2.3, but in practice student code is much more complex.

To collect student data during their unsupervised work, we modified the Eclipse Inte-
grated Development Environment (IDE) to support snapshotting of student code [127] as
they work through the assignment, shown in Figure 2.4. The IDE manages a process repos-
itory, a Git repository that stores a snapshot of student code whenever a student compiles
and runs the assignment, meaning that snapshot frequency could be on the order of minutes
when a student is actively working. Then, when the student submits their final program
for grading, the IDE automatically packages up the process repository and stores it on the
course server.

In the CS1 course studied, the Pyramid assignment has been used for many years,
with little variation in assignment scope and grading rubric. We analyzed 2,633 student

submissions from as far back as 2007 (where the bulk of data was collected between 2012
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Figure 2.4: The pipeline for creating a process repository during unsupervised work.
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Figure 2.5: Pyramid work time analysis on 2633 student process repositories.

and 2014) by compiling and running all Pyramid code files in the process repositories to
generate timestamped images. Figure 2.5 shows the distributions of the number of snapshots
(1 ="52,0 =59) and hours spent (u = 1.7,0 = 1.5) for process repositories in our dataset.
Of the 138,531 snapshots in our dataset, we successfully generated 101,636 images; 36,895
snapshots had runtime or compile errors. While the default canvas size for Pyramid is W754
x H492, we have found that a common functional error that students encounter is drawing
objects off-screen; we thus add a 100px border to the graphics canvas and save our images

to be W954 x H692, in color.

2.2.1 Dataset complexity

For a graphics-based assignment like Pyramid, using image output to represent the func-
tionality of student work is less complex—and therefore easier to work with—than using a
text-based representation like ASTs. Like many other coding assignment datasets that have
been analyzed in the past, the frequency distributions of both the Pyramid assignment’s
code ASTs and the image output files follow Zipf’s law, the same distribution as natural

language. This insight implies that the exponent s of the Zipf fit can be used as a measure
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Figure 2.6: Rank-frequency distribution of the PyramidSnapshot images.

of the complexity of a programming dataset, where a higher exponent means that a dataset
has a higher probability of observing the same solution more than once and is thus less com-
plex [123]. The frequency distribution of Pyramid ASTSs fits to a Zipf exponent s = 0.57,
which is notably more complex than logistic regression implementations (s = 1.82), CS1
first week homeworks (s = 2.67), and pre-CS1 (CS0) coding challenges [128, 177]. On the
other hand, the Pyramid image outputs have a Zipf distribution with exponent s = 0.78
(Figure 2.6), suggesting that modern tools for understanding images may be more effective

than an AST-based approach for understanding functionality of intermediate solutions.

2.2.2 Labeling milestones efficiently

Next, we discuss how to design labels of functional progress for our PyramidSnapshot image
dataset. While Figure 2.1 shows that student activity is highly variable, nevertheless we
want to quantify the functional behavior of students so that we can visualize progress over
time in Section 2.4.

We label the PyramidSnapshot dataset with milestone labels; that is, each image is
categorized into one of our 16 visual categories of intermediate work. Figure 2.7 shows
an example image for each of these milestones. These milestone labels were decided after
looking through the top 100 most popular images. It is important to note that the term
milestones does not imply that a student must progress through all 16 milestones to complete
the assignment; rather, they represent different approaches to the assignment. For example,
Milestone 2 (Single row) and Milestone 3 (Diagonal) are different implementations of a single

loop of bricks. After consulting with an instructor, the recommended approach—in other
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(1) Hello world (2) Single row (3) Diagonal (4) Two row

(5) Rectangle (6) Parallelogram (7) Right triangle (8) Column structure

9) Scalene triangle (10) Pyramid-like (11) Offset pyramid  (12) Offset EC

m

vvvvv

(13) Perfect (14) Perfect + EC (15) Off-track (16) Brick wall

Figure 2.7: Examples from the 16 milestone category labels in the PyramidSnapshot dataset;
EC stands for Extra Credit.

words, the one most suggested by instructors—for this assignment is to draw horizontal
rows; Milestone 3 (Diagonal) and Milestone 8 (Column Structure) therefore pertain to
single and nested loops, respectively, for both diagonals and columns, which are considered
more difficult approaches to debug. Milestone 15 (Off-track) is marked for any image that
does not fit into the other 15 categories.

Based on instructor advice, in Table 2.1 we group the 16-dimension space into five
meaningful stages of knowledge, organized based on whether students are working on a
single loop (Stage 1), a nested loop (Stage 2), adjusting brick offset within the nested loop
(Stage 3), or enhancing a completed assignment and going beyond what is expected (Stage
4). The remaining milestones are grouped as “Other/Off-track.” We note that higher-level
abstracted knowledge stages are more meaningful for a human grader as such stages will
not differentiate between two milestones associated with the same level of student cognitive

understanding.
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Stage description

Milestones

1 Single row
Nested loop
3 Adjusting nested offset

\)

4  Adding final details

2) Single row, (3) Diagonal, (4) Two row
5) Rectangle, (7) Right triangle

6) Paralellogram, (9) Scalene triangle,

) Pyramid-like, (11) Offset pyramid

) Offset EC, (13) Perfect,

0

2

4) Perfect + EC
—  Other/Off-track )
)

Table 2.1: Knowledge stages are groups of milestones.

# Snapshots Unique images Effort score

Total 138531 27220 5.1
Labeled 84127 12077 7.0
Unlabeled 17509 15143 1.2
Error 36895 — —

Table 2.2: Label coverage of the PyramidSnapshot dataset.

It would be an insurmountable task for a researcher to label over 101,000 images in
our PyramidSnapshot dataset. However, we observe from the distribution of our data
(Figure 2.6) that only 27,220 (27%) of these are unique. Furthermore, the perfect pyramid
(Milestone 13) in our dataset is the most frequent and occurs over 11,000 times across all
student work, and the ten most popular images cover 20,219 images (20%) in our 101,636
image dataset. One can therefore label unique images to milestones in order of popularity in
the dataset; a single researcher labeled 12,077 unique images with corresponding milestones
in 20 hours over three days, covering 84,127 images (83%) of the actual dataset.

Table 2.2 shows our label coverage of the dataset, where the effort score represents the
gain of labeling a unique image as the frequency of that image appearing in the overall
dataset. The average effort score of unique images labeled was about 7 repeated images; on
the other hand, each remaining unlabeled unique image appeared on average 1.2 times in
the dataset, meaning that we would not have gained much with this labeling strategy had we
continued into the tail of the distribution. Figure 2.8 shows how our labeling strategy covers
many of the images within each student process repository. With the effort strategy, we

have ensured approximately 87.5% of student process repositories are at least 75% labeled.
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(c) Hello world
(Milestone 1)

(d) Offset Pyramid

.(Milestone 11)

Unique Effort
Milestone (%) score
1 Hello world 14.25 6.6
2 Single row 11.79 6.4
3 Diagonal 8.81 4.4
4 Two row 2.91 4.5
5 Rectangle 4.96 5.2
6 Parallelogram 3.55 4.4
7 Right triangle 7.71 4.5
8 Column structure 1.27 2.3
9 Scalene triangle 3.59 3.2
10  Pyramid-like 8.74 3.4
11 Offset pyramid 6.85 9.0
12 Offset EC 2.16 2.4
13 Perfect 4.39 314
14 Perfect + EC 7.14 3.1
15 Off-track 11.49 2.6
16  Brick wall 0.40 6.2

(e) Milestone label coverage.

Figure 2.9: Labeling the PyramidSnapshot dataset: (a-d) Top four most popular images in
the dataset; (e) Distribution of milestone labels over dataset.
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If we analyze the coverage of the milestone labels in Figure 2.9, we observe that three of
the top four most popular images are what an instructor would expect a student to complete,
while the fourth most popular image represents the most common incorrect solution. Figure
2.9e shows the effort score breakdown by milestone. While Milestone 1 has the largest share
of unique images, Milestone 13 yields the highest effort score because the most popular image
of a perfect pyramid is an order of magnitude more common. Different students will rarely
share extra credit image outputs, and naturally Milestones 12 and 14 have among the lowest

effort scores.

2.3 Milestone classification

In this section, we explore automatic classification methods for classifying intermediate
snapshots by milestone. We realize that the popularity-based labeling scheme from the
previous section presents a scalability challenge for other assignments, even if we use image
frequency to reduce labeling effort. Instructors who use this labeling scheme in the classroom
will probably label closer to tens or hundreds of images—and not the thousands labeled in
this work—and subsequently rely on machine classification for the remainder of the dataset.
We therefore pay special care to analyze how the accuracy of a classification model works
as we vary N, the number of most popular images that we label, defined as our training set
size.

The classification models used in this section are by no means comprehensive, nor are
they designed to be optimal. Instead, in the original publication [180], these models were
presented as baseline models for future researchers to use as benchmarks. However, our
results show that a simple neural network baseline works quite well even with a very small
training set size, and we conclude by discussing next steps for improving upon our baseline

classification accuracy.

2.3.1 Method

Given a training set of the N most popular images, we consider three models for classifying
our images with milestones. For Models 2 and 3, we train only on unique images, and not
the entire repeated image dataset, since we have a one-to-one mapping between image and
milestone. We preprocess each bordered image by grayscaling and downsampling by 2 for
an input of 346 x 477 x 1.
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Figure 2.10: Model 3, the neural network model for milestone classification.

Model 1: Unit test. Our first approach is based on the premise of unit testing: select
one representative image for each milestone, and for each test image, predict a milestone
only if the test image pixels exactly match that of the reference; otherwise it predicts
nothing. Unlike the other two models, the unit test training set size is fixed at N = 15 unit
test images; we do not save a representative image for the Off-track milestone (Milestone
15).

Model 2: K-Nearest Neighbors. The second approach, K-nearest neighbors (KNN),
is a common baseline used for computer vision [86]; for each test image, define the K nearest
neighbors as the K images from the reference training set (of size N) that have minimum
sum-squared-difference (pixel-wise), and predict the most common milestone out of the
nearest neighbors.

Model 3: Neural network. Our third approach is a deep learning approach: train
a convolutional neural network to return the most likely milestone label, shown in Figure
2.10, which has a model size of 1.2 million parameters. We train on the top N most popular

images and optimize for softmax cross-entropy loss.
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Overall Unit test KNN (K =100, Neural network
accuracy (N =15) N = 11000) (N = 11000)
By milestone

(16 milestones) 275 087 562

By knowledge 275 552 649

stage (5 stages)

Table 2.3: Milestone classification results. Accuracy of each model (with training set size
N) by milestone and by knowledge stage on the 11,000 most popular images.

2.3.2 Results

To evaluate our approaches to classifying milestones from graphical image input, we trained
each classifier with a varying size of N on our training set of the most popular images, and
we evaluated its overall accuracy on two datasets: the walidation set, composed of the
top 11,000 popular images (corresponding to 70% of our image dataset), and the tail set,
composed of the remaining 1,077 labeled images. We use the validation set to decide which
classifiers work for common snapshots; the tail set accuracy is an indicator for whether our
classifiers work on rarely seen snapshots.

For all models, we use two metrics of accuracy: milestone accuracy—akin to an exact
match metric—and knowledge stage accuracy—where if the predicted milestone is within
the same knowledge stage as the actual milestone, the model classification is correct. While
our models were trained with unique images, we incorporate image popularity when assess-
ing model accuracy; both metrics are reported as an average, where each image is weighted
by its frequency in the PyramidSnapshot dataset.

We first discuss accuracy results on the validation set. The results for each classifier
with the best choice of training set size N is reported in Table 2.3, showing the overall
accuracies in classifying all 16 milestones and all five knowledge stages. For both accuracy
metrics, we immediately see that our neural network outperforms the other two unit-test
and KNN (K = 100) models. In Figure 2.11 we report our neural network accuracy for
predicting a milestone that is in the same knowledge stage as the correct milestone label; the
model reports at least 70% accuracy for Stages 1, 2, and 3, which are the most formative in
determining student progress towards the assignment goal, and therefore the low accuracy
in identifying Stage 4 is acceptable.

To understand how our third model, the neural network, connects image to label, we use



CHAPTER 2. PYRAMID MILESTONES 27

1.00
0.81 0.86 0.77 0.70
0.50
0.28
0.00
Other/ Stage 1: Stage 2: Stage 3: Stage 4:
Off-track single row nested loop adjusting adding final
(1,8,15,16) (234) (5,7) nested offset details

(69,10,11)  (12,13,14)

Figure 2.11: Accuracy breakdown of neural network model performance by knowledge state.

i Milestones
9,10,11,12
—
| . |
Milestones
13,14 Milestones
5,6,7,8
Milestones
1,2,3,4
T —
Milestones 15,16
o not pictured

Figure 2.12: t-SNE plot of model embeddings, color-coded by milestone.

the t-SNE algorithm [165] to compress the model’s internal image representation into a 2-D,
clustered visualization. Figure 2.12 shows that our image embeddings roughly cluster by
their milestone; however, there are some perfect pyramid images (Milestone 13, red) hidden
among the Hello world milestones (Milestone 1, blue). Upon checking these incorrectly
classified images, we found that some of them depicted a very small pyramid, which could
easily be misclassified as a single block, but others were simply incorrectly placed in the
embedding space. Our hypothesis is that since unique images of single bricks dominate our
dataset, our model has a tendency to predict Milestone 1 in the absence of any other strong
indicators.

Next, we discuss our results when evaluating on the tail set, corresponding to the 1,077
least popular (labeled) images in the tail set. All three models performed poorly: Unit test
reported 0% accuracy (due to its pixel-based exact match strategy), and both KNN and our
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Figure 2.13: Efficiency analysis of model validation accuracy with varying training set sizes.

neural network model performed with less than 1% accuracy for almost all choices of our
training set. This is a major area in which future models can improve; the more reliable we
are in predicting the tail of our model, the more confident we can be in imputing milestone
labels on unlabeled images in our dataset.

Efficiency analysis. Even if graphics-based assignments may generate similar image
outputs, a model tuned with transfer learning to the new assignment still requires a newly
labeled training set of the new assignment data. The most time-consuming component of
characterizing functional progress is not the training time of a machine learning model; it
is preparing a labeled training set (Section 2.2). We therefore define the efficiency of the
method described in this chapter as a function of the labeling effort required by a researcher
or expert instructor to prepare training data.

We discuss how the accuracy of each baseline model performs with more efficient labeling
—that is, fewer training images labeled—on the full validation set. The training set still
consists of the N most popular images, where we vary N from N = 100 (most efficient,
least effort) to N = 11,000 (least efficient, most effort). We then evaluate the performance
of the KNN and neural network models with different training set sizes IV, and we evaluate
their performance on the validation set of the top 11,000 most popular images. The unit
test efficiency is always the same—one image labeled for each milestone.

Our results are shown in Figure 2.13. Naturally, the KNN model performs best with
a huge dataset, but what is surprising is that the neural network already outperforms the

other two models even with only N = 100 items in the training set. There is a small peak at
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N = 800 for the neural network model; this artifact is because the model correctly predicted
the milestones of some high-rank images, therefore weighting the accuracy upwards; this
trend disappears when we compare accuracy across unique images only. In general, the
takeaway that we can get just over 60% accuracy with just N = 100 labeled data points is

very promising.

2.3.3 Discussion and future work

The baseline models discussed in this section are first steps in designing classifiers for this
task. We find that an N = 100 neural network model performs reasonably well on our vali-
dation set. We decided to train our models strictly on pixel-based image output by design;
given that saving image output for graphics-based assignments is quite easy to implement
across different classrooms. Future models could certainly incorporate additional input fea-
tures to aid this particular task on the Pyramid assignment, such as the coordinates of
each object on the canvas, features from a sequence of student snapshots, and preprocessors
hand-coded to identify certain milestones.

Another feature of our baseline models is that all unique images were weighted equally
during training. As a result, our neural network model was incredibly tuned to detect
Milestone 1 (Hello world), which took up most of the unique images in our dataset (Figure
2.9¢), but did not do as well when classifying column structures, for example. To improve
classification accuracy, we could weight our training loss function by the popularity of
each image. The near-dismal results on the tail set also raise concerns about skewed data.
Importantly, we note that while many students share common popular images, the tail set is
much more diverse: 16% images appear exactly once; 387 students are each responsible for
2.8 images, on average; and 40% of the milestones in this tail set are Off-track (Milestone
15). It is inevitable that we will encounter incredibly rare images in the tail of our set;
improving performance on very unpopular images is left to future work.

Given that current and future machine classification models on this task could be im-
pacted by the particular composition of students in our dataset, we propose a way forward
to analyzing functional progress: Use a combination of human milestone labeling for the
N most popular images—where N is small-—and machine-classify the remaining images by
popularity. We use this approach to visualizing and understanding students in the following

section.
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Figure 2.14: A colormap of milestones over two student work trajectories. The missing gray
images are imputed with milestones that are similar to the neighboring milestones. Best
viewed in color.

2.4 Understanding students

In the previous two sections, we described a method for defining and subsequently classifying
functional progress through a labeling abstraction called milestones. Next, we describe how
visualizing functional progress allows us to glean pedagogical insights about our students.
Our first task is to assign labels on the 17,509 unlabeled image snapshots in our dataset.
Figure 2.14 shows this process; we first tag images that were human labeled, and then we
follow with using machine labels to impute unlabeled image snapshots. Each colored bar
represents a student’s work trajectory of milestones in their process repository, where each
vertical colored strip represents a single snapshot. The top and bottom students in Figure
2.14 represent students who finished quickly and slowly, respectively. The strip’s color
indicates its milestones, where a colored heatmap corresponds to knowledge stages: Stages
1 and 2 are blue colors, Stage 3 is yellow/green, Stage 4 is red, and all other off-track and
error snapshots are in grayscale. We then use this milestone classification to gauge how
students move through the Pyramid assignment, both on an individual student basis (in

Section 2.4.1) and on an aggregate classroom level (in Section 2.4.2).
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Figure 2.15: Student work trajectories during the Pyramid assignment. Two groups of three
students, respectively scoring in the (a) 99th percentile, and (b) 3rd percentile or lower on
the midterm exam. Best viewed in color.
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Figure 2.16: Three students with long work trajectories. (a) Struggling students; (b) Tin-
kering student. Best viewed in color.
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2.4.1 Student work trajectories

After imputing the milestones on the remaining unlabeled snapshots, we found some very
telling examples of how different students work on the assignment over time. When we
compare high-performing students (Figure 2.15a) with low-performing students (Figure
2.15b), we observe that these groups of students tend to concentrate their work in different
stages. All three high-performing students have few snapshots in Stages 2 and 3, instead
spending a significant portion of their time working on the perfect pyramid (Milestone 13).
In contrast, the low-performing students spend a large fraction of time in Stage 3’s early
milestones that emphasize brick offset adjustments. One student also fails to reach the
correct solution, ending instead in the offset pyramid milestone (Milestone 11).

From our data, we can also visually discern between certain students who were struggling
to get anything working and those who were tinkering [23, 162]—where a student spends
a long time at a particular knowledge stage not because they are stuck, but because they
are exploring the solution space. Figure 2.16 shows three students that have used over 100
snapshots for the Pyramid assignment. The first two students (Figure 2.16a) spend a large
portion of their time working in Stage 1. In contrast, the last student (Figure 2.16b) spends
most of their time in a late Stage 3 milestone, the offset pyramid (Milestone 11), suggesting
some sort of tinkering and adjustment. When we connect these work trajectories with
these students’ performance on the midterm, the first two students score in the 19th and
21st percentile, respectively, while the third student scores in the 73rd percentile. While
previous research has found that tinkering is valuable to student learning, we can now
visualize tinkering in the context of functional progress.

Observing individual student performance is valuable during a course; instructors can
identify and give constructive feedback to different students. However, there is also value to
observing aggregate functional progress on an assignment in the classroom. Instructors who
identify that most of their students spend time on a learning concept during the assignment
can address or highlight those concepts as review. Alternatively, if instructors detect their
students are struggling with portions of the assignment unrelated to core learning concepts,

then they can revise and improve the assignment specifications for a future course offering.

2.4.2 Aggregate student work

We use our milestone information to gauge how much time a student spends on average in
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Figure 2.17: Average amount of assignment (by number of snapshots) that students spent
in different knowledge stages.

each of our knowledge stages to decide which content to emphasize in classroom teaching.
Figure 2.17 graphs the average percentage of snapshots spent in each of the knowledge
stages, where we use our neural network predictor to impute the knowledge stages of the
unlabeled fraction of the dataset. We consider Stages 1 through 4 as monotonically in-
creasing phases of the assignment; i.e., as soon as a student shows work in Stage 2, they
have left Stage 1 and cannot return. Students can freely move between the Other/Off-track
knowledge stage and the other stages; we did not graph the 24% of snapshots that students
spend on average in compile/runtime errors. We observe that on average, students spend
22% of their time in Stage 3, where they must manipulate the loop index to correctly offset
blocks in different rows of the Pyramid. Understandably, students spend most of their time
(39%) adding final details and finishing up (Stage 4). Knowing this time distribution can
inform which concepts students struggle with; after this analysis, instructors devoted more

time in class to discussing loop index manipulation skills needed for Stage 3.

2.5 Image classification for grading

Given that a large portion of our milestone classification method depends on human expert
effort to create a labeled dataset, we also want to understand how well image classifiers
would perform for a dataset whose labels already exist. As an aside, we thus explored how
to design an autograder that strictly uses an image-based, deep-learning approach to grade
student final submissions. From anecdotal experience, graphics assignments tend to be

more difficult and time-consuming to grade than their command-line counterparts, mainly
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Figure 2.18: Running five different pyramid configurations on two final student submissions.
(a) Student correctly draws all pyramids. (b) Student fails to convert to floating-point,
resulting in round-off error in the fifth pyramid.

because the set of possible correct graphical outputs is often large. The CS1 course studied
thus historically has used human graders to decide the functionality grading component of
the Pyramid assignment. In this section, we discuss how these autograders fall short for two
main reasons: human grading labels are unreliable, and rubrics for grading functionality in

introductory CS1 encode more than just functionality.

2.5.1 Data

We prepared a second dataset, the PyramidFinal dataset, which contained 4,383 students
tagged with assignment grades across eight course offerings from 2009 to 2017. A student’s
Pyramid assignment grade is the number of correct rubric items awarded by a grader. The
course assistant analyzes the student program code and its output on five different, pre-
determined configurations of the pyramid and marks the student on a set of 9 independent
rubric items. The grader analyzes the student program code and its output on five prede-
termined sets of assignment parameters which vary the Pyramid’s dimensions. The grader
then evaluates the student based on a rubric of nine independent items, where each item
is binary pass/fail; we represent this rubric marking as a rubric vector. Figure 2.18 shows
two different student program outputs on each of the five different Pyramid configurations.
Figure 2.18b depicts the most common error for this assignment, which is that lack of float-
ing point arithmetic occasionally yields a skewed Pyramid. The rubric item descriptions
were consistent across all 8 course offerings.

While the human course assistant has access to the code of each student’s final submis-

sion, we evaluate an autograder who can only access image output. However, it is insufficient
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Figure 2.19: The neural network for rubric classification on final submissions.

to use just a single image per student. As an example, of the 2,799 student solutions that
draw a perfect pyramid on all the default correct Pyramid configuration (Figure 2.1a), only
1,990 students receive full credit; the remaining 809 students are marked off in 82 different
ways, with some solutions having up to five errors.

We therefore run each student submission five times on the five pre-determined Pyramid
configurations used in assignment grading. The spread of students with the correct five-
tuple of pyramid configurations is much smaller: of the 1,485 students that share the image
five-tuple of a fully correct solution, only 85 students are marked off in 20 possible ways (up
to three errors). However, since there is still variation in the rubric vector, for our training
task we take the most common rubric vector for each unique five-tuple of images. Unlike the
PyramidSnapshot dataset, we save only the canvas of the image—with no extra border—to
mirror what a human grader would observe; each image thus has the default canvas size
W754 x H492. Each of the samples in our PyramidFinal dataset therefore is a tuple of 5
image outputs and a boolean vector marked with the most common rubric vector. We split

our dataset into training and test sets of size 3,945 students and 438 students, respectively.

2.5.2 Method

We compare two approaches to image-based autograding. The first is a unit-test-based
model. For each rubric item, we identify a representative subset of pyramid configuration
images that would lead to an incorrect rubric item. To mark this rubric item as incorrect
for a student’s five-tuple of images, if there is an exact match (pixel-wise) between the
student’s images and the representative subset, then we mark the student as having that

rubric incorrect. There are 7 such subsets of representative images; two of the rubrics could
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Unit test image Neural network
F1 Acc F1 Acc

Train 0.15 0.95 0.46 0.97
Test  0.15 0.95 0.40 0.97

Table 2.4: Average accuracy and F1 scores when predicting rubrics on final submissions.

Rubric item Frequency F1 Accuracy
1 Incorrectly indexes outer loop .03(.02)  .00(.09) .97(.98)
2 Incorrectly indexes inner loop .02(.02)  .00(.09) .98(.98)
3 Miscalculates the pyramid’s x-position ~ .11(.11)  .79(.73)  .96(.94)
4 Miscalculates the pyramid’s y-position — .12(.11)  .83(.85)  .96(.97)
5 1-brick base row unit-test fails 03(.04)  .42(.47)  .97(.97)
6 30-brick base row unit-test fails 01(.02)  .00(.24) .98(.98)
7 Different brick size unit-test fails 01(.01)  .00(.14)  .99(.99)
8 Tiny bricks unit-test fails 14(.14)  .88(.88)  .97(.97)
9 Fails to convert to double .08(.07)  .67(.69)  .95(.96)

Table 2.5: Neural network model performance for predicting final rubric items on training
set (in parentheses) and test set.

not be paired with representative images, which we discuss in the following section.

Our second model implements a separate convolve pipeline for each image, combining
the representations with an affine transformation prior to the fully connected layers (Figure
2.19). Our last layer uses a sigmoid activation instead of softmax, because each image can
have multiple rubrics tagged (e.g., a pyramid can be both off-center horizontally and have
arithmetic round-off error). The model optimizes the sigmoid cross-entropy loss function;
after grayscaling and downsampling (again by 2) for each image in our five-tuple, we have
an input with dimension 5 x 246 x 377 x 1, resulting in a model size of 5.1 million parameters.
We keep all 3,945 students as separate datapoints in our training set, instead of keeping

only unique samples as in the neural network model for milestone classification.

2.5.3 Evaluation and discussion

We report in Table 2.4 our results of running our two final submission grading models. Both
models have very high average accuracies; however, this is because very few students get

marked off for any of the 9 items in the rubric vector (the average frequency of incorrect
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rubric items was 10%). We therefore prioritize the F1 score metric, which is a harmonic
mean of the precision and recall scores (measuring false positive and false negatives).

We notice that F1 scores for both models are quite low. For the unit test model, we
were unable to create representative, incorrect subsets of images for rubric items 1 and 2.
Both of these rubric items assess code-based student misconceptions; it is impossible for
our models to distinguish whether a nested loop indexing error occurs in the inner loop or
outer loop of student code by just looking at image output. The neural network model’s F1
scores and accuracies for each rubric item are reported in Table 2.5. The model performs
poorly for rubric items 1 and 2, possibly for similar reasons as the unit test model. For
rubric items 6 and 7, we hypothesize that a dearth of examples for these rubric items in our
training set led to poor performance.

The results from this section point to a broader question of how to design grading rubrics
for introductory CS1 assignments. The Pyramid grading rubric discussed in this assign-
ment is designed to assess a student’s proficiency in the Pyramid assignment as well as
their mastery of programming principles, and as a result some rubric items conflate incor-
rect functionality with incorrect programming. Yet it is essential to give students feedback
beyond functionality at this stage in their CS career. Nevertheless, the variability of human
grading on this task remains a concern. In the CS course studied, human graders follow a
handout that carefully outlines how to interpret incorrect images of different pyramid con-
figurations, but ultimately the students’ marks are subject to grader discretion. We expect
that these factors would be mitigated in more advanced CS courses—whose functionality
grading rubrics would leave programming quirks to a separate style grading rubric—and

designing image-based autograders for assignments in these courses is left for future work.

2.6 Summary

This chapter’s analysis of the PyramidSnapshot dataset shows that characterizing functional
progress is feasible and useful. Labeling intermediate snapshots for any assignment is a
human, time-intensive task; we therefore design our milestone labeling method to minimize
instructor labeling effort, with the hope that a low bar would encourage instructors to
prepare new assignment data for functional progress analysis. In our study, our milestone
labeling method hand-labels a small set of popular images, then uses image classifiers to

extend milestone labeling to the rest of a dataset of snapshots of intermediate student work.
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We found that a baseline neural network classifier trained on the 100 most popular images
performs relatively well, suggesting that our original task is not as daunting as it may seem.
Yet perhaps our biggest contribution is publishing the labeled PyramidSnapshot dataset as
an annotated benchmark for classifying functional progress. We hope that future research
will expand on our findings by improving machine prediction of functional labels of progress
and by analyzing student work patterns in greater detail.

We explore initial directions for using milestones to visualize and compare student work
patterns. The link between work pattern and performance is not new, but our work is
the first to show the relationship with functional progress. In the future, functional labels
for student data snapshots can be used in conjunction with existing indicators of progress,
like error messages and code length to better predict student performance [22, 23, 79].
A reasonable next step for this work is to better understand the interplay between error
resolution and functional progress [16, 79, 170]. We can imagine that such analysis can
also be performed on both micro and macro scales. For the individual student, we can
understand how different groups of students resolve errors, and when these errors are more
likely to occur. On a classroom level, we can better understand at which stage in the
problem students are encountering the most errors, and then use this information to better
guide how we teach debugging in other facets of the course.

In the classrooms of tomorrow, instructors will have a deeper understanding of how
students perform unsupervised work. This work is a first step in sparking research to better
understand the learning process, from which future findings will undoubtedly translate
quickly to classroom practice. We hope that instructors are inspired by our work to generate
functional progress labels for their own students, so that as researchers we can ensure that

our analysis reaches as many classrooms as possible.



Chapter 3

Pensieve

Assignment feedback is a critical component of student learning [54, 133]. Given that one
of the primary learning goals of CS1 is to teach students how to solve programming chal-
lenges, it would be immensely useful to provide feedback on how a student worked through
solving an assignment. Such formative feedback—suggestions for how students can improve
their problem-solving skills in the future—would help students take control of their own
learning [21, 32, 133, 117]. Yet for a variety of reasons, many contemporary classrooms
provide only summative feedback—feedback evaluating the correctness of a student’s final
answer [84, 164]. Hours of unsupervised work, during which a student actively learns and
interacts with the material, are manifested in a single deliverable—a single snapshot of the
student’s thinking—from which an instructor must glean enough information to understand
learning process. The current classroom model of evaluating only a student’s final submis-
sion misses the opportunity to give students feedback on their problem-solving process.

However, providing feedback on a final student submission is already challenging, and
providing feedback on the hundreds of steps a student may take to get to their answer seems
prohibitively difficult. While the previous chapter covered a methodology for characterizing
functionality during the learning process, its seamless integration into a CS classroom is
still many years into the future. This chapter introduces Pensieve, a simple-to-use tool that
can be used immediately in classrooms today to facilitate human conversations about how
students progress through a programming assignment.

1

Pensieve' is an interactive visualization of student work history on an assignment and

In the well-known Harry Potter franchise, the Pensieve is a magical tool used to save and examine a
user’s past memories.

39
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can be used to give feedback on a student’s problem-solving approach. After a student
completes their assignment, an instructor can use Pensieve to review the student’s learning
process and give feedback to the student in person. Pensieve gives both students and
teachers a means to see progress on an assignment—ifrom the time a student first looked at
the assignment starter code to when they submitted the final product—thereby facilitating
conversation around metacognition and student learning that is critical for introductory
computer science learners. When teachers can observe a student’s process, they are able
to give timely feedback addressing student mistakes and to adjust and personalize their
own teaching [27]. When students observe their own process—even in the absence of the
instructor—they can internalize metacognitive observations [32]. Through our streamlined
user interface, understanding progress becomes quick and feasible, even in a large classroom.

In this chapter, we begin with an overview of the pedagogical motivations for designing
the Pensieve tool, as well as existing tools for giving feedback to CS students. After in-
troducing the technical implementation details of the tool, we share our experiences using
Pensieve in a 10-week CS1 course. We close with discussion on best practices to deploy
our tool quickly and effectively in other CS classrooms. To speed up adoption of our tool,
as part of this work we released Pensieve as an open source tool that both students and

instructors can use.?

3.1 Pedagogy and motivation

¢

Pensieve aims to “push back” against the trend of automated grading tools in classrooms

by thoughtfully integrating a human grader into assignment feedback. We designed the tool

with several objectives in mind:
1. Foster metacognitive skills
2. Identify methodology errors early
3. Counteract plagiarism effects in a large classroom
4. Gentle introduction of version control.

Our first objective is to improve metacognitive education in computer science. Metacog-

nition is a learning theory for “thinking about thinking;” to most effectively learn, students

2The Pensieve tool is available at https://github.com/chrispiech/pensieve.
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must not only understand the problem but also understand and reflect on where they are
in the problem-solving process. A key finding of a landmark National Academy of Sciences
study on learning science was the effectiveness of a metacognitive approach to instruc-
tion [28]. In educational theory, Bloom’s Revised Taxonomy characterizes metacognition as
one of the highest cognitive knowledge dimensions for any learning activity [13, 58, 161]. Re-
search has also shown that students with stronger metacognitive awareness tend to perform
better on programming tasks [18, 39, 52]. Importantly, metacognition directly supports
the concept of a growth mindset, the theory that intelligence can be developed with experi-
ence [48]. Students who believe that ability is a fixed trait are at a significant disadvantage
in STEM fields compared to their peers who believe in a growth mindset.

Our second objective is to encourage early identification of methodology errors. Most
assignments in large-scale computer science classes are assessed summatively: the teaching
assistant sees and grades only the students’ final submission. However, research has conclu-
sively shown that nongraded formative assessments are key to improved learning [28, 83].
They allow teachers to identify which thought processes work for students and to provide
useful, directed feedback so that each student can improve. As such, this goal is intertwined
with our goal of fostering metacognition in computer science—through reflecting critically
on their programming process, students will be able to both identify areas for improvement
and understand how to achieve that improvement earlier.

Thirdly, by emphasizing the importance of the learning process, we hope that Pensieve
can act as a preemptive deterrent to potential plagiarism. Students who plagiarize all
or parts of their assignments stunt their metacognitive development in programming and
reap fewer benefits from formative feedback. They may also become stuck in a cycle of
plagiarism in which they are increasingly unable to complete work independently [163].
Many current approaches to combating plagiarism in large CS classrooms focus on detecting
similar code in the final submission; however, this further reinforces the importance of the
final grade received above the intrinsic value of learning [29]. We hope that by monitoring
the development process [163], we can better support students who may otherwise feel
overwhelmed.

Lastly, we deploy a light version of Pensieve for students to facilitate project version
control. In the absence of instructor feedback, Pensieve may still be useful to students;
while a student works, they can use Pensieve to browse and restore previous snapshots of

code. By presenting software version control as accessible and useful in introductory CS
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courses, we hope that students can quickly adapt to more heavyweight version control tools

like Git and Maven in more advanced courses.

3.2 Related work

While existing work research addresses the four objectives of Pensieve, to our knowledge
our work is the first to combine all four objectives in a tool that can be adapted easily to
existing CS1 classrooms.

Novice programmers benefit from metacognitive awareness. Lee et al. found that per-
sonifying the programming process increases online engagement with a coding task [96]
and Marceau et al. studied how novice programmers interact with error messages [103].
In general education, Tanner et al. reported on generalizable teaching practices for pro-
moting metacognition, such as instructor modeling of problem solving, tools to help stu-
dents identify learning strategies, and guided reflection [160]. Pensieve incorporates all of
these strategies by engaging students—with the support of teaching assistants—in their
own metacognitive understanding of computer science. Loksa et al. found that students
who are trained in problem solving procedures are more productive and have higher self-
efficacy [100]. However, the intervention was studied in a camp setting, where instructors
explicitly discussed problem-solving strategies with individual students as they worked on
the assignment. It would be intractable to apply this tool to an unsupervised work context
in a university CS classroom, where student-teacher interaction during the working period
is more infrequent. Cao et al. proposed Idea Garden, a tool that automatically suggests
problem-solving procedures within the student’s IDE. While this tool is autonomous, it is
still labor-intensive for the instructor, who must correctly anticipate and articulate sugges-
tions that address potential obstacles. This suggestion procedure may fail to adequately
support many open-ended assignments, in part because poorly constructed instructor hints
could discourage students from exploring different solution paths.

Formative feedback in the classroom can have a variety of impacts [17]. Van der Kleij
et al. found that detailed feedback contributes more to student learning than feedback
on correctness does [164]. Students also benefit more from an assignment when they have
interactive, dialogue-based critiques with peers or instructors [32, 117]. We design our tool
with the awareness that feedback is not a one-sided conversation; teachers should hold

discussions with the students to improve student learning for the rest of the course [27].
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While many tools automate summative assignment feedback, Pensieve seeks to augment
such tools with formative feedback generated by human instructors. In many large class-
rooms, automated assessment tools (AATS) use teacher- or student-written tests to generate
assignment feedback [10, 49, 75]. Larger classrooms like massive open online courses push
towards full-automation by using systems like intelligent tutors to personalize the learning
experience for online students [42]. However, Prather et al. found that novice programmers
struggle with interpreting results from AATs, which are not designed to explicitly support
student metacognition. There have been studies on how to design automated computer
agents for personalizing debugging hints explicitly for CS1 curricula [139]. Nevertheless,
to our knowledge there is no automated tool for providing formative feedback. Pensieve
leverages the in-person peer instructor system widely used in many large CS1 courses [56]
to provide human feedback on higher-level cognitive tasks to teach students beyond the
current assignment.

Some classrooms have used version control systems to give formative feedback, as version
control simplifies management of large courses [37] and makes it easier to identify problems
in work habits and progress [89, 92, 137]. We take a slightly different approach, placing less
emphasis on learning how to manage a version control system than on encouraging student
self-evaluation [99]. Our tool focuses on surfacing this information in a clear manner,

providing a light introduction to the benefits of version control.

3.3 Pensieve details

Pensieve is primarily designed for educators to easily give feedback on the learning process.
We minimize instructor workload by designing Pensieve as a drag-and-drop, out-of-the-box
tool for viewing student assignment progress. It is ported as a JAR file; an instructor
can simply download the JAR into a student assignment folder, run it, and begin viewing
student intermediate snapshot data. In this section, we first explain the components of the
Pensieve tool shown in Figure 3.1. We then discuss in detail a classroom pipeline for using

Pensieve in a one-week assignment.

3.3.1 Tool implementation

The only required folder for Pensieve to work is a process repository of timestamped code

snapshots of a single student working on an assignment—data which is increasingly available
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Figure 3.1: Diagram of Pensieve display, composed of four main components: (a) Assign-
ment timeline, left; (b) Current snapshot information, center; (¢) Snapshot functionality,
top right; and (d) Workflow graphs, bottom right.

to educators [132]. In our case study, we use Git to timestamp and save snapshots of Java
code in the Eclipse IDE, as described in Section 2.2. However, Pensieve depends neither
on the use of Eclipse nor Java in the classroom; it merely requires that student work be
cached over time in a timestamped code folder. Our tool can work at a coarser granularity,
such as on assignments that require students to commit periodically to an online storage
platform like GitHub. The tool can also operate on setups like those on Code.org, which save
snapshots whenever students run their code. We utilize the timestamped code repository
to analyze both student code progress and timing information.

Pensieve visualizes snapshots within the process repository, as shown in Figure 3.1. A
user can (a) view a timeline of progress on the assignment, (b) select a current snapshot
to analyze in more detail, (c¢) identify functional progress on the current snapshot, and (d)
access metrics of code changes over time. We discuss each of these components in more
detail below.
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Assignment timeline

The leftmost panel of the tool (Figure 3.1a) displays all captured snapshots for a given
student file. Each entry in the timeline contains the snapshot index (in temporal order),
the amount of time spent so far on this file, break time, and an optional color key indicating
functional progress (discussed more below). Time spent on the assignment is calculated as
an aggregate of relative timing information between this snapshot and the previous one.
We mark break time in parentheses, where a break occurs when two consecutive snapshots’
timestamps differ by more than 10 minutes. By browsing the timeline, an instructor can
infer where students took substantial breaks to get a cursory glance of which snapshots

would be worth closer attention.

Current snapshot information

Selecting a snapshot in the assignment timeline list updates the displays in current snapshot
information, snapshot functionality, and the red line in the workflow metrics graph (Figure
3.1b). The current snapshot’s code in the center panel has appropriate syntax highlighting
and is in plain-text, allowing an instructor to select and copy code to an editor if additional
verification is needed. The top-right panel is used to display this code’s output when
compiled and run; if the code has a compile or runtime error, nothing is shown. The
example assignment shown in Figure 3.1 draws a pyramid from the Pyramid assignment
described in Chapter 2. It is important to note that Pensive is not running snapshot code
live; the compiling and running of any student code is done in a preprocessing step. The

details of designing such a preprocessor are discussed more below.

Snapshot functionality

The top-right panel (Figure 3.1c) visualizes the output of the currently selected code, if
there were no compile or runtime errors. All outputs for all snapshots are run and saved
prior to downloading and running Pensieve in a preprocessing step. In our implementation,
this occurs on the course servers after students submit the assignment and before instructors
begin grading. The preprocessor compiles and run each snapshot in each file; if there are
no errors, then the output is saved into a separate folder. The Pensieve program then
interfaces with the folder of outputs via a JSON metadata lookup, which associates the

snapshot (represented by a (Unix Epoch timestamp, original filename) tuple) with the
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following features: a flag for compile error, a flag for runtime error, the output file path,
and a milestone metric, of which the latter two are only valid if both error flags are off.
Any additional metadata per snapshot can also be saved in this JSON lookup file.

In our example assignment, we mainly use graphics exercises based on the Java ACM
graphics library [142]. As a result, output file paths point to saved output PNG files. How-
ever, one could easily run and save console program output as plain-text log files, which can
be displayed in the top-right panel of Pensieve with minor modifications. Milestone metrics
are computed based on each snapshot’s output; if there are unit tests for the assignment,
this can simply be the number of passed unit tests. For our image files, we use an image
classifier that determines a milestone label for each snapshot, as described in Chapter 2.
The milestone metric per snapshot is displayed as a small square color indicator in the left

timeline panel; runtime and compile errors are assigned separate color indicators.

Workflow graphs

The bottom-right panel (Figure 3.1d) contains time series of various file metrics to visualize
student progress and style over time [22]. The SourceLength graph shown displays code
length (in green) and comment length (in yellow) in number of characters, as well as a
red, vertical indicator of the currently selected snapshot’s metrics. Another graph displays
indentation errors over time—which are allowed in Java but are indicative of messy coding
style—and a third graph displays custom metadata from the timestamped code directory;
for example, our process repositories also record the number of code runs per snapshot.
Instructors can easily toggle between these time series, which are intended to highlight
student work patterns, such as when they started thinking about good style and indentation,
or whether the majority of their work and code changes were concentrated at the end of

the timeline.

3.3.2 Classroom use

Figure 3.2 shows an assignment feedback pipeline that uses Pensieve. First, a student
works in their own environment (a lab computer, personal laptop, or in-browser app),
which saves timestamped snapshots of their code progress. The student then submits their
work to a database, where optional preprocessing occurs; for example, to generate and save
snapshot output for later review. Third, the teacher downloads and reviews the student

code submissions using Pensieve. Finally, the teacher discusses the code with the student
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Figure 3.2: Enabling student-teacher conversations on learning process with Pensieve.

in a classroom setting. Because Pensieve is a tool designed for formative feedback, the
in-person feedback on learning process is ungraded. To prevent outcomes of the student-
teacher conversation from influencing any component of grading, autograders or human
grading should happen prior to instructor use of Pensieve (i.e., before step 3).

Teachers in our classroom provide assignment feedback to their students in two ways:
the functional and style grades produced from a fixed rubric, and an ungraded interactive
grading (IG) session [143], where the teacher and student sit down for a one-on-one, 15-
minute session to discuss the student’s code, any misconceptions, and tips to improve for
future assignments. The purpose of the IG session is to maintain conversation throughout
the quarter so that students can actively reflect on their coding process. We therefore insert
Pensieve into the IG session (step 4 of the pipeline in Figure 3.2).

We design Pensieve to quickly integrate into existing classrooms. In our classroom, each
teaching assistant (TA) is assigned to eight students for the duration of the quarter. The
TA’s weekly responsibilities are to teach discussion sections, grade assignment work, and
hold IG sessions. They download student solution code from the course database, typically a

few days prior to the grading deadline, which is a week after the student submission deadline.
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At the time of TA download, Pensieve is already included as part of each student folder. Any
preprocessing to generate visual program output or console output logs must be included in
the student folders prior to download; this is done to ensure that the grader can run Pensieve
as a lightweight tool on their own computers. The preprocessing step to generate and save
graphical output on three separate code files for a 400-student class took about half a day.
In the absence of a course database or preprocessor, a teacher can simply drop the Pensieve
JAR into the assignment directory on the students’ computer. Once the JAR is within the
correct directory, teachers and students alike can quickly navigate the process repository of
timestamped code snapshots and discuss coding tips and misconceptions. If the only added
time is the 5-10 minutes to review each of eight students’ programming process, then the
total anticipated extra time for each individual teacher incurred by Pensieve adoption is
40-80 minutes.

Teachers can use Pensieve during these IG sessions to gain a holistic view of how the
student thought through the assignment, and to identify, for example, places where students
struggled with concepts or showed good style habits. For the student in Figure 3.1, the
teacher could identify from the SourceLength graph that prior to the last two snapshots,
the student did not comment at all (the starter code has 170 characters of comments)—in
other words, the student began adding comments right before submission. The code source
length had a similar jump; upon clicking on later snapshots the teacher could identify the
student decomposing their code into smaller helper functions in the last 10 minutes of
work. The teacher could then gather that the student was opportunistically commenting
and adding helper functions in order to increase the final submission’s style score. As part
of the IG session, the teacher could suggest that the student use comments and helper
function design during the assignment to guide problem-solving.

In addition to the teacher-facing version of Pensieve, we also design a reduced version of
the tool for students to use as a light version control software. Students are notified of this

software during the course; the JAR file is available as part of assignment starter code.

3.4 Experience

In this section, we share our findings on using Pensieve in a CS1 course. At the time of
performing this study, we used Pensieve in two terms: Winter 2018, which was used to

refine the tool implementation and teacher training procedures in tool usage, and Spring
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Agree Agree

(%) Item (%) Item

90 Insights from Pensieve lead to 80 Want an option “to show
“more actionable and only major changes in code”
specific assistance” to better prioritize

70 Pensieve “is helpful for showing information and feedback
instructors which students 75 Want more “student-facing
might need extra help” features”

— Data on assignment — “All of the data Pensieve
completion time presents is helpful but
are “especially valuable” can be overwhelming”

(a) Positive feedback. (b) Points to improve.

Table 3.1: Teacher survey results on using Pensieve.

2018, which we will refer to as the Experience Term.

We sought to evaluate the impact of our tool on the Experience Term in three ways:
(1) a formal qualitative analysis of how useful instructors found the tool, (2) an official
university survey on how useful students found the tool, and (3) quantitative measures
of performance on exams, time to complete assignments, and honor code violations. All
evaluations reveal a consistent story of educational benefit that we expect to see given the

improved pedagogical benefits.

3.4.1 Student and teacher evaluations

At the end of the Experience Term, we asked students to provide a Likert rating for the

)

statement, “It was useful to see the process of how I learned using Pensieve,” as part of
their formal course evaluation. Students on average strongly agreed (u = 4.6/5,0 = 0.6).
Furthermore, students gave a higher rating for the quality of course instruction and feedback
(uw=4.8,0 = 0.4, where 5 = Excellent, and 4 = Good) than in previous terms (u = 4.6,0 =
0.4) for the Experience Term instructor. Response rate was 70% for N = 207 students in
the course.

To measure how useful teaching assistants found our tool, we requested an external
facilitator to conduct a small group instructional diagnosis (SGID) [36]. External evaluators
met with M = 31 TAs who used Pensieve in the Experience Term to discuss (1) whether

using the tool improved the teachers’ understanding of student learning process in CS, (2) if
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Baseline Term Experience Term
Winter 2017 Spring 2018

Students 498 207
Women 51% 52%
> 10 hrs exp. 37.4% 27.7%

Table 3.2: Student demographics in the CS1 course studied.

there were ways to improve the tool, and (3) if there were ways to improve how the tool was
used in the classroom. The evaluators solicited feedback and consolidated major sentiments.
To minimize bias, the course instructor and researchers were not present during the SGID.
The results of the teaching evaluations are reported in Table 3.1. The TAs articulated that
they found the tool to be useful, despite it requiring more work on their part. The feedback
session suggests that more teacher training or better highlighting within the tool would

improve the teacher experience.

3.4.2 Learning analysis

In addition to measuring the perception of students and teachers, we also place importance
on quantifiable improvements in learning outcomes. Under our hypothesis that Pensieve
had a substantial impact on student learning, we expect to see a notable change in student
performance.

In the following analysis, we compare our findings in the Experience Term to those in
a Baseline Term (Winter 2017), which did not use Pensieve. Table 3.2 shows the student
demographics for each term. The Baseline Term had many more students, and they had
significantly more CS background than those in the Experience Term; 37.4% of students
in the Baseline Term reported > 10 hours of programming experience, versus 27.7% of
students in the Experience Term. Both terms had a comparable self-reported gender ratio.

Both the Baseline Term and the Experience Term had the same instructor, lectures,
and assignments. We focus on the first half of the course, whose timeline is identical across
both terms (Figure 3.3). The “Pensieve intervention” is defined as the Pensieve-assisted
IG sessions for Assignments 1 and 2 during the Experience Term. The Baseline Term’s
corresponding IG sessions did not use the tool, and all conversations were based on the

student’s final submission.
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Figure 3.3: Assignment and exam timeline for both the Baseline and Experience terms.
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Figure 3.4: Comparing course performance between the Baseline Term and the Experience
Term, where we deployed Pensieve, by (a) assignment completion time and (b) midterm
ability.

In the Experience Term, we provided our tool to the entire class—as opposed to running
a randomized control trial—and thus it is not possible to report on the causal impact of
using Pensieve. While we could not observe causality, we can observe correlation. The co-
occurrence of using the tool and notable learning improvement adds weight to our belief that
the tool has a positive impact. To assess the co-occurrence of learning gains, we measured
changes in (1) time spent on assignments after the Pensieve-assisted interactive grading

assignment, (2) exam performance, and (3) plagiarism.

Assignment time

We used student assignment completion time as a pre-post measure of their ability to
program. For each of Assignments 1, 2, and 3, we used the timestamps within the process
repository to calculate assignment completion time. The Experience Term saw a significant

decrease in the number of hours spent on Assignment 3, the assignment due after the
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intervention, from an average completion time of 7.0 hours down to 6.3 hours (Figure 3.4a).
A possible explanation for this phenomenon is that Assignment 1’s IG session, although
part of the Pensieve intervention, occurred just before the due date for Assignment 2, and
thus Pensieve’s impact could not manifest until students began Assignment 3.

This decrease in Assignment 3 completion time is particularly striking given that in
the Experience Term, students were slower on average to complete Assignments 1 and 2.
To account for the longer Assignment 1 time, for each student in the Experience Term,
we compare their Assignment 3 completion time (X3) with their predicted Assignment 3
completion time had they been in the Baseline Term, given their Assignment 1 completion

time (X3|X1). The average difference between these two times is as follows:

Decrease in Assn 3 time = E[X3]X] — E[X3]
= 48 mins (p < 0.0001)

We observe an increase in Assignment 3 grades between the Baseline and Experience Term,
but the change is not significant (6 = 3.2pp, p = 0.07). There was no significant change
in grades on Assignment 3, as most students score highly on this assignment (p = 98% in

Baseline, u = 101% in Experience).

Exam ability

On its own, the ability to complete an assignment faster does not indicate that students
have learned more. Another measure is how well students performed on the class midterm,
which follows immediately after Assignment 3 is due. We use Item Response Theory [50] to
calculate a midterm “ability” score for each student. Given that we gave different exams in
each term, we first evaluated the difficulty of all exam questions on a consistent scale. We
then define student ¢’s score on question j as S; ; = n; - 0(a; — d;) where S; ; is the score
of student i on question j, n; is the number of points on the question, d; is the difficulty
of the question, a; is the ability of the student, and o(-) is the sigmoid function. We can
then reverse calculate a;, the ability of student i, given their observed score and problem
difficulty. The difference in exam ability between terms is shown in Figure 3.4b. Student
midterm abilities, measured on a scale from 0 to 10, increased from an average of 6.9 in the

Baseline Term to an average of 7.6 in the Experience Term (p < 0.0001).
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Figure 3.5: Comparison between the Baseline Term and the Experience Term, broken down
by students with High, Mid and Low levels of initial CS background: (a) Hours taken to
complete Assignment 3 and (b) Midterm ability.

Plagiarism

One of the theorized impacts of using Pensieve is that it would create a culture where pla-
giarism would be less prevalent: it is much harder to cheat if you are going to be presented
with your process. For Assignment 3, trajectory-based plagiarism detection (TMOSS, dis-
cussed in Chapter 4) shows a small decrease (from 4.3% of the Baseline Term students down

to 3.9% of the Experience Term students), but this statistic is not significant.

Impact on novice programmers

Given that background knowledge outweighs many other factors for predicting student
performance in CS1, we disaggregate our assignment time results and exam ability results
based on students’ prior knowledge. We split students into three equal-sized terciles (Low,
Mid, High) based on a background statistic, computed as a weighted sum of normalized:
reported hours of experience (50%), Assignment 1 grade (30%) and Assignment 1 work
time in hours (20%). Our results comparing Assignment 3 completion time and midterm
ability between the Baseline Term and Experience Term are shown in Figure 3.5. We see
that the improvements in both metrics are largely experienced by the Low tercile. The Mid

tercile also had significant improvements, while the High tercile showed negligible changes
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in either metric.

Despite these promising results with Pensieve, there are many uncontrollable, confounding
factors. In particular, TAs are not required to use our tool, and it is highly likely that those
who effectively use the tool are already more effective teachers to begin with. Instead of
taking our analysis as conclusive proof of the efficacy of Pensieve, it is better to see these

results as a positive indication that such a tool improves the student learning experience.

3.5 Best practices

Given that we would like Pensieve to work beyond the course studied in this chapter, this
section is dedicated to best practices of Pensieve in future classrooms. These tips were
gleaned from our own use of the tool and comments from TAs during the SGID sessions.

When to use Pensieve. With the goal of developing student metacognition at an
early stage, Pensieve should be deployed for the first few programming projects in a course.
This enables teachers to identify process errors early on and recommend good programming
practices, as well as develop a student’s metacognition.

Pensieve works best with timestamped process repositories; for introductory CS courses,
it is best to design a system for collecting frequent snapshots of student work, on the order of
minutes. For more advanced CS courses, it is more natural to focus on higher-level problem-
solving procedures, and therefore coarser-grained snapshots from a student’s self-managed
online assignment code repository should be sufficient.

How to use Pensieve. Pensieve can be deployed in many ways. We believe that it
is most valuable when teacher and student sit down together and use the tool to facilitate
discussion. This type of conversation helps a teacher identify struggling students early on, so
that they can be monitored and helped through the course. In our experience, keeping these
short sessions ungraded helps to create an environment where students can ask questions
about their own learning. Alternatively, the tool could be used for remote feedback, though
we expect the missing human conversation will limit the impact on student learning.

Teacher training. If Pensieve will be used in student-teacher interactions, then it is
important to train teachers to use this tool effectively. Teachers should be instructed on
how to foster conversations with students about problem solving techniques. We specifically

advise teachers to talk about top down “decomposition” and “iterative testing” [40]. We
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recommend training teachers to use the graphs in Pensieve to efficiently find the most
“important” snapshots of progress—i.e., snapshots that indicate a change in problem-solving
approach, different milestone work (as in Chapter 2), or a shift in student objective (e.g.,
moving from functional progress to code style progress, such as commenting or decomposing
functions).

In our experience, teachers found the image output of graphics-based programs to be
very useful when skimming to understand how students implemented their code. However,
Pensieve can also work well (and preprocessing will be faster, with low storage overheard)
with console-type programming assignments. For assignments where students implement
many small functions, all of which are autograded, autograder unit tests results are a valid
measure of snapshot functionality. For these assignments, we suggest that the preprocessor
run autograder unit tests and display the results in Pensieve as snapshot functionality.

Establishing culture. Pensieve works best with fine-grained code snapshots in process
repositories; naturally, this brings up questions of student privacy. When presenting the
tool to students, we clearly disclosed that our intentions were to help students learn as
much as possible. Just like in other classes, the more work a student shows, the more
helpful feedback a teacher can give. Similarly, when introducing Pensieve to students, it is
an opportunity to explain that plagiarism is much more obvious when a teacher has access

to what happens during unsupervised work.

3.6 Summary

In this chapter, we presented Pensieve, a tool that gives teachers a window into how students
work over the course of a programming assignment. Pensieve is most effective with a human
teacher in the loop—a trained teacher can glean learning process information from our tool
to give students feedback on programming methodology and problem-solving strategies.
Our tool is explicitly designed to enrich the discussion and flow of ideas between teacher
and student. There are many potential extensions to Pensieve that can reduce the time
that a teacher needs to understand student unsupervised work, but our initial study has
already received overwhelmingly positive feedback by both students and teachers alike.
Perhaps the most important contribution of Pensieve is that the tool can provide more
formative, more effective feedback to students. Despite the growing size of undergraduate

classrooms, we believe that using tools like Pensieve in student-teacher discussions are
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worthwhile investments for the time-constrained instructor. Given the amount of time
needed to learn how to code, giving novice programmers formative feedback early can be a
highly efficient use of scarce human resources. If students are encouraged to reflect on their
process, they improve their metacognition and can become more effective, self-regulated

learners in their future endeavors.



Chapter 4

TMOSS

In the past decade, an increasing number of educators have begun digitizing and transform-
ing the learning experience in order to meet the ever-rising demand for education. This
phenomenon is especially apparent in CS education at the undergraduate level, where the
nature of the learning material enables efficient use of computing resources. Not only can
the content be delivered via online lectures, but an entire homework assignment can also
be delivered, submitted, and graded with the aid of autograders.

Due to the size of the CS1 class at many universities today, it is intractable to monitor
every student as they progress through an assignment, even with the use of undergraduate
or graduate TAs [56, 147]. Instead of each teacher quickly identifying who needs help, it
is more common that struggling students must seek out instructor help through scheduled
office hours. By asking students to take on the responsibility of seeking help, a pressing issue
arises. Sometimes, the students who struggle the most will not access the provided learning
environments and will instead find their own resources; seeking shortcuts to learning, they
may occasionally resort to unpermitted outside resources. This is especially prevalent in
large online courses [184].

Two questions arise from the current state of large CS1 classes: Given that there is
a risk of excessive collaboration, where students overly rely on outside resources like peer
code or online solutions, how can we identify students who exhibit such behavior during
unsupervised work on assignments? Furthermore, how does excessive collaboration correlate
with student assignment work patterns and overall course performance? If we can address
these two questions, we can learn more about our students, detect students exhibiting

excessive collaboration, and ensure a healthy learning environment.
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In this chapter we tackle both of these problems by introducing Temporal Measure
of Software Similarity (TMOSS), based on the well-known Measure of Software Similarity
(MOSS) system [148]. TMOSS! is a tool that builds on traditional software similarity
score measures like MOSS. Instead of reinventing the wheel of software similarity detection,
TMOSS uses existing software similarity tools to detect excessive collaboration over the
entire duration of unsupervised work, not just on a student’s final submission.

After summarizing related work in Section 4.1, we describe our dataset of unsupervised
work on the Breakout assignment in Section 4.2. Section 4.3 introduces the TMOSS tool,
which uses student process repositories to compute similarity scores; these summaries are
then verified by a human to hypothesize which students may have exhibited excessive col-
laboration. Section 4.4 gives a theoretical framework for interpreting similarity scores and
show that the similarity scores of regular students can be modeled with a parametric Gum-
bel distribution. Finally, in Section 4.5 we report our results using TMOSS on our dataset,
and we find that students who exhibit excessive collaboration spend significantly less time
on their assignment, use fewer class tutoring resources, and perform worse on exams than

their peers.

4.1 Related work

Many software similarity systems have been developed over the past two decades to detect
for software plagiarism. Some MOOCs use biometrics measures like keystroke logging to
authenticate students at the beginning of a work session [91, 101]. In university CS courses,
however, students often have multiple sessions of unsupervised work, where they work from
an offline IDE and submit online at the conclusion of an assignment. A larger portion of
classroom software similarity detectors detect plagiarism on the final version of code that
students submit [34, 59, 129, 131, 148, 172, 175]. These tools can be used in conjunction
with one another, e.g. as features in a machine learning detector [51]. However, these tools
may report many false negatives, as they cannot detect excessive collaboration that happens
during the assignment.

Online learning and teaching CS courses at scale have prompted new research on model-
ing and understanding student learning from programming assignment solutions. Spohrer et

al. [156] observe and collect student progress based on observation of student programming

!The TMOSS tool is available at https://github.com/yanlisa/tmoss.
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bugs, whereas Piech et al. [127] use assignment progress repositories to analyze intermediate
student work. Social science research in the past has attempted to explain motivations for
student plagiarism, citing that plagiarism is most common when there are small penalties
and high rewards [31, 104].

Recent work has combined these two areas of research and analyzed how excessive
collaboration affects student performance. Pierce et al. [129] developed a tool that correlated
plagiarism with negative performance over other assignments in the course, and there has
also been anecdotal evidence that over-reliance on outside help can incite negative student
experiences in a CS1 course [121]. Schneider et al. [149] implemented a plagiarism detection
tool that analyzes logs of student interaction with course software. To the best of our
knowledge, our work is both the first to use information during unsupervised work to identify
excessive collaboration and the first to model the probability of false positives in similarity

software detection.

4.2 Data

In this study we focus on three offerings of CS1 at Stanford University: Fall 2012 (416
students), Fall 2013 (476 students), and Fall 2014 (528 students). In the course studied,
Breakout is the first large, intensive creative project assignment, and enthusiastic students
often extend their work beyond the minimum requirements (Appendix B). At the same time,
the assignment unfortunately also creates the first opportunity for excessive collaboration.
In our course, we know of eight online solutions (from online repositories or coding blogs)
that students regularly use for excessive collaboration; other students use solutions from
peers who are concurrently taking or have previously taken the course.

The Breakout assignment is held on week four of a 10-week course. All three course
offerings studied were taught by the same instructor, and students had nine days to work
on Breakout (with an extra two late days to submit with potential grade penalty). While
students work on the assignment individually until the deadline, they can also attend walk-
in office hours held Sunday to Thursday evenings to clarify concepts or discuss debugging
tips with undergraduate TAs. In our analysis, we leverage attendance logs of these TA
hours—students record their check-in time and their assignment or course issue, and TAs
record the students’ check-out time and issue resolution.

Similar to Chapters 2 and 3, we use Git and the Eclipse IDE to save process repositories
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Start day -5.22  2.73
# Snapshots 253 199
Hours on task  9.77 4.93
—_ TA hours 4.18 9.09

Table 4.1: Statistics per Breakout repository (1,420 students).

for the Breakout assignment (Section 2.2). Table 4.1 provides a summary of the 1,420
process repositories used in our dataset. On average, students started the assignment 5.22
(bootstrapped SE=2.73) days before the deadline and spent a mean of 9.77 (bootstrapped
SE=4.93) hours on task. TA office hours attended were calculated over the entire course.
Hours on task were determined by grouping snapshot times that were within half an hour
of each other. Due to the graphics-based, open-ended nature of the Breakout assignment, it
is not fully autograded; for this work, we did not have unit tests or metrics for functionality

per snapshot.

4.3 Method

In this section, we give an overview of the typical process of flagging student final submis-
sions for excessive collaboration with other students or online solutions. We then present
TMOSS, a tractable method for identifying excessive collaboration over intermediate ver-

sions of student code.

4.3.1 Traditional software similarity detection

Traditional software similarity detectors compute similarity scores over a student’s sub-
mitted code; these tools compare the student code to peer submissions and online solu-
tions on various metrics, and flag student submissions that deviate from standard statis-
tics [34, 59, 129, 131, 148, 172, 175]. Among these, Measure of Software Similarity (MOSS)
is highly regarded as the standard for detecting software plagiarism in the classroom [8, 148].
The software acts as a filtering tool prior to human decision; submissions with high simi-
larity scores are checked manually by course staff, who identify excessive collaboration as

plagiarism on a case-by-case basis. These pairwise detectors all scale quadratically with the
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ALGORITHM 1: Computing top matches in TMOSS.

Input: N students (students)
n online solutions (online)
Output: N top matches (top_matches). Each student has a tuple of (highest
similarity score, match code).
top__matches = [|;
for sin1...N do
compare_set = getFinalSubmissions(students - students[s]) + online;
snapshots = getRepository(students]s]);
M = snapshots.length(); student_matches = [|;
foriin1...M do
results = compute_similarity(snapshots[i], compare_set);
student__matches.append( argmax;_; n.,_; results[j].getScore() );

end
top__matches.append( argmax,_; j, student_ matches[i].getScore() );
end

size of the class, as comparing N student submissions to N peers and n < N known online
solutions requires a runtime of O(N?).

Running these tools on student final submissions can only identify a subset of the stu-
dents exhibiting excessive collaboration. For example, suppose a student pastes in an online
solution momentarily to check the desired output, then removes the online solution and sub-
mits his or her own work. While this is a plagiarism case at many academic institutions,
existing software similarity detectors cannot flag this student from his or her final submis-

sion work.

4.3.2 TMOSS: Temporal Measure of Software Similarity

TMOSS is a tool designed to extend traditional software similarity detectors by identifying
excessive collaboration on any intermediate snapshot of a student’s process repository, not
just final code submission. While TMOSS (as the name implies) currently implements
MOSS-based similarity scores [148], the tool can be easily adapted to different similarity
detector backends.

An outline of TMOSS’s operation is shown in Algorithm 1. TMOSS produces N
top matches—one per student—corresponding to the final peer or online code that re-

turned the highest similarity score over all M snapshots per process repository. The
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Figure 4.1: Examples of students in the HEC group.

compute_similarity() function is our traditional similarity detector backend, which com-
putes similarity scores of a student snapshot to each of the final and online code files.
Attempting to run existing pairwise similarity detection algorithms on all M snapshots for
each of N students would require O(N2M?) runtime, which is impractical. Instead, we
avoid pairwise comparison by comparing a snapshot to IV final peer submissions and n < N
online solutions, thus reducing the runtime per snapshot to O(NN) and the overall runtime
to O(N2M). We note that comparing snapshots to final code is often preferable; similarity
score algorithms that we surveyed scale much better with larger code files, and compar-
ing two intermediate code files often produces a very low similarity score. Finally, we use
human detection as the final step to determine which of these N top matches exhibits ex-
cessive collaboration. All students who fall into this category are put into the hypothesized
excessive collaboration (HEC) group.

Figure 4.1 shows the excessive collaboration patterns over time of four students from
our HEC group. Using MOSS as the detector backend for TMOSS, we plot the percent (%)
similarity of a matched final submission to snapshot index i, defined as the i-th snapshot
in a process repository. Time is computed as the normalized snapshot index (from their
first compiled snapshot at 0.0 to their final submission at 1.0). While all of the students
graphed exhibit excessive collaboration, Student A would go undetected by a typical run of
MOSS on final submissions. We define Student A as a TMOSS-only student.

MOSS similarity scores. While any pairwise software similarity detector that fits the
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Figure 4.2: 95th percentiles of different MOSS similarity scores over time.

function signature of compute_similarity() can be used in TMOSS, we describe MOSS,
which is used in our implementation [8, 148]. MOSS returns a triplet of similarity scores
for each pair of (snapshot, match), where match refers to a final or online solution file: (1)
number of tokens—MOSS’s internal, tokenized representation of code—shared between the
two programs, (2) % snapshot similarity, and (3) % match similarity. The latter two scores
are computed as the percentage of shared tokens in the tokenized MOSS representation of
the student snapshot file (% snapshot similarity) and the matched peer or online solution
file (% match similarity).

In our implementation of TMOSS, we only consider the first of these metrics—the
number of shared tokens—to pick the top match for each student. We ignore the % snapshot
similarity score since it varies inversely with the length of the student snapshot, and therefore
it will be high when the student starts and will decrease as the student progresses (Figure
4.2). By contrast, the other two metrics do not exhibit this behavior. We further compare

the use of number of tokens and % match similarity as similarity scores in Section 4.5.

4.4 Theory

What is the chance that a student, who did not cheat, is reported as having plagiarized?
In this section we provide a theoretical framework for calculating the probability of a false-
positive maximum similarity score. The theory presented applies to all similarity measures
for plagiarism detection, including MOSS and TMOSS.

Consider a student S who worked independently. The score Y that is analyzed for
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student S is the highest similarity score between the student and all other submissions:
Y = max; X;, where X is the similarity score between student S and another student j.
When we compute X, there is an non-zero probability that the score will be accidentally
large. While we assume that this probability is exceedingly small, the likelihood of a false-
positive report for student S increases when we compute a similarity score between them
and every other student in the history of the course. The potential for a large max similarity
score arising by chance—in the absence of collaboration—is concerning and worth exploring
in detail.

We assume that the probability distribution of X; is unknown but exponentially-tailed.?
We also assume that, if student S did not collaborate with any of their peers, the values
X should be mutually independent. Finally, it is reasonable to suppose that the X; scores
have the same (though unknown) distribution. The Fisher-Tippett-Gnedenko Theorem, a
more obscure cousin of the Central Limit Theorem, tells us that the max of exponentially-
tailed independent identically distributed (IID) variables can only converge to a Gumbel
distribution [64]. If our assumption holds that Y is the max of exponentially-tailed IID
random variables, Y should have a Gumbel distribution, where the following relation holds

for all values of k:

Pr(Y Z k‘) — 1 _ e—ef(k*llf)/ﬁ

(4.1)
The parameters of mode (u) and scale () can be estimated using minimal datapoints via
the method of probability weighted moments [102].

With the above assumptions, the MOSS and TMOSS scores of a non-HEC student S
(who was hypothesized to not have excessively collaborated) should come from a Gumbel
distribution. In the case of MOSS, X is precisely the pairwise similarity score between
the final submissions of students S and j. For TMOSS, Y = max; X, where X is the
maximum similarity score for the i-th snapshot of student S Therefore if X; = max; M;;,
where M;; is the pairwise similarity score between the i-th code snapshot of student S and
student j’s final submission, then ¥ = max; max; M;; = max; max; M;;. Then max; M;; is

the result of compute_similarity() of student j’s final submission across all snapshot in

2An exponential tail is a reasonable assumption for the token count similarity score X j. Notably, this
assumption has a light impact on the results: If X; has a sub-exponential tail (for example % similarity has
a fixed upper limit and thus has no tail), Y will have a Reverse Weibull Distribution, which along with the
Gumbel is a special case of the Generalized Extreme Value Distribution.



CHAPTER 4. TMOSS 65

MOSS TMOSS

HEC students 35 (2.5%) 61 (4.3%)
Runtime 0.03 hr 9.77 hr

Table 4.2: Results of TMOSS (per snapshot) and MOSS (per final submission) on set of
1,420 students. HEC students are determined with human verification on the tool’s results.

student S’s process repository; in the case of MOSS, this is exponentially-tailed. If student
S did not collaborate, then max; M;; should be mutually independent over different students
Jj, and therefore the distribution of the TMOSS score (with MOSS as a backend) follows
equation 4.1.

Once the parameters of Y are known, we can answer questions using Equation 4.1: What
is the probability that we mark student S as a false positive, where .S, who did not work with
any other student, has a similarity score Y that is greater than some threshold k used to
report plagiarism? The Fisher-Tippett-Gnedenko Theorem should apply for any plagiarism

measure—not just MOSS and TMOSS, and not just for programming assignments.

4.5 Results

We ran both TMOSS and MOSS on our dataset of N = 1420 students (along with n = 8
known online solutions) and used human verification to determine students in the HEC
group. With TMOSS, we found 61 HEC students (4.1% of the dataset); in contrast, we
found only 35 students (2.5% of the dataset) using the traditional MOSS tool (Table 4.2).
We ran both experiments per course offering by restricting peer submissions to those in the
same course; for this particular CS1 course, we did not find significant excessive collabo-
ration across different course offerings. MOSS takes at most a few minutes to run, while
TMOSS needs to be run overnight.

We compare the distribution of final submission similarity scores in regular MOSS
(Figure 4.3a) with that of the maximum similarity score over all snapshots in TMOSS
(Figure 4.3b). In both cases, the distribution of similarity scores for the non-HEC stu-
dent group (1,359 students, as identified via TMOSS) fits a Gumbel distribution (TMOSS:
w = 153.4,8 = 37.8; MOSS: u = 118.8,5 = 39.2). However, the distribution of TMOSS
scores for the HEC group is easily differentiable from the non-HEC group, whereas the
MOSS scores for the HEC group are less differentiable, further suggesting that TMOSS is
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Figure 4.4: Precision-recall curve for TMOSS with two different backend MOSS scores.

a better metric for detecting students in the HEC group.

We next consider whether different MOSS similarity scores would have produced better
results. From Section 4.2, the number of shared MOSS tokens and % match similarity can
both be considered valid scoring backends as they are less dependent on snapshot length than
the third similarity score, % snapshot similarity. We would like to use the score that gives
us higher precision and recall (i.e., low false negatives and low false positives) of the HEC
group. For each similarity score, we filter the TMOSS top matches through various score
thresholds k£ and compute the precision and recall of the resultant candidate HEC group,
shown in Figure 4.4. We find that the optimal threshold for number of tokens (k = 367

tokens) produces an F1 score (a harmonic mean of precision and recall) of F1 = 0.97,
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Non-HEC HEC

# Students 1359 61

W (SE) 4 (SE) »
(a) Midterm 519 (.282)  .191 (.207) <.0001
(b) Final 518 (.282)  .167 (.189)  <.0001
(c) Start day 5.31 (2.69) -3.31 (2.92) <.0001
(d) Hours on task  9.88 (4.92) 7.23 (4.34) <.0001
(¢) TA hours 427 (9.24)  2.10 (4.04) .02

Table 4.3: Work patterns of Non-HEC and HEC students.

compared to the optimal threshold for % match similarity (k = 46%) at F1 = 0.83. From
these results, we conclude that the number of MOSS tokens leads to lower false negatives

and false positives in detecting excessive collaboration.

4.5.1 Performance analysis

We next consider how excessive collaboration is correlated with assignment work patterns
and overall course performance. Table 4.3 compares students who excessively collaborated
(HEC) and those who did not (non-HEC). Exam scores (Midterm and Final, respectively
in Table 4.3a and 4.3b) are calculated as exam ranking in the respective course offering;
students who dropped the class partway were removed when calculating exam statistics.
Start days (Table 4.3c) are numbers of days prior to the scheduled deadline that a student
started the assignment. All standard errors are bootstrapped. All p-values are computed
by bootstrapping for 100,000 iterations on a one-tailed hypothesis test.

We observe that students in the HEC group compared to those in the non-HEC group
tend to start significantly later (an mean of 3.31 days before the deadline, § = 2.0 days later),
have significantly lower midterm and final scores (§ = 0.328 and § = 0.351, respectively),
spend 27% less time on task, and often attend fewer TA office hours (51% less over the
entire course).

We considered whether factors other than HEC group membership correlated strongly
with student exam performance. A natural one to consider is start date on the Breakout
assignment; one could imagine that procrastination predicts course performance, but we
found that this signal was not as strong as HEC group membership. Figure 4.5 shows that
for non-HEC students, a later start on the assignment is correlated with lower performance

on the midterm. However, the HEC group performs consistently lower than the non-HEC
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Online-Match ~ Peer-Match MOSS TMOSS-only

# Students 55 6 35 26

1 (SE) p (SE) p 1 (SE) 1 (SE) P
(a) Midterm .192 (.208) 183 (.202) .50 158 (.161) .235 (.250) .08
(b) Final .169 (.193) 156 (.148) .49 114 (.106) .246 (.247) <.01
(c) Start day 313 (2.95)  -5.00 (1.83) .07 297 (2.85) -3.77 (2.94) .14
(d) Hours on task  6.98 (4.18) 9.54 (5.04) .09 5.98 (3.65) 891 (4.61) <.01
(e) TA hours 2.03 (4.18)  2.67 (2.38) .25 2.38 (4.61)  1.71 (3.08) .25

Table 4.4: Work patterns of different groups of HEC students.

group regardless of how early or late they start the assignment. The distribution for the
final exam scores were consistent with this finding; for clarity they are not shown.

We next compare students within the HEC group and separate students based on their
collaboration source (online solution or peer solution) and their detectability on TMOSS
and MOSS. In order to detect which students used online solutions, we constructed an
undirected connectivity graph of all NV students and n online solutions, where edges connect
student nodes to their top match nodes. We create this graph because for some students,
their top match in TMOSS connected them to a different student, when in reality both
students collaborated with an online solution.

In Figure 4.6, we show all components of our graph that contain HEC students; other
components that contain only non-HEC students are not shown. Thicker edge weights
represent higher TMOSS scores. There are 68 nodes total: 61 HEC students, 3 online
solutions, and 4 non-HEC students. We define an online match HEC student as belonging
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Figure 4.6: Network of HEC students.

to a graph component containing an online solution, a peer match HEC student as connected
only to other students, and a conspirator student as a non-HEC student connected to HEC
students. These conspirator students were not flagged for excessive collaboration because
their process repository did not significantly match any other student’s final solution; in
other words, HEC students used their non-HEC peer’s final solution, but not vice versa.
We observe that out of the 61 students in the HEC group, only 6 students are in
our peer-match group. The largest cluster of excessive collaboration contains 50 students
connected to an online solution that is the top result when searching the course assignment
in a common internet search engine. In Table 4.4, the students in the online-match HEC
group tend to start slightly later than those in the peer-match HEC group; however, the
p-values are limited by the small sample size and we are unable to draw any real conclusions.
We also compare the 35 students who were detectable via MOSS and the 26 students who
were only detectable via TMOSS; these TMOSS-only students had high similarity scores
over the course of their assignment, but did not exhibit excessive collaboration in their final
submission. Looking again at Table 4.4, we find that the students who were detectable
only through TMOSS tended to start the assignment slightly earlier and perform better
on the midterm than the MOSS-detectable students, but these statistics were not signifi-
cant. However, the TMOSS-only students spent significantly more time on task (§ = 2.93
hours) and perform significantly better on the final (6§ = .132) than the MOSS-detectable
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students.

4.6 Discussion

Our results show that TMOSS, a temporal analysis of student progress to detect excessive
collaboration, is a tool with feasible runtime for our classrooms. TMOSS is more precise
than the final-submission-based detection algorithms used today. Temporal tools are not
only effective for detecting unusual patterns of students, but they can also be used to
further understand work patterns as correlated with class performance in an effort to provide
improved feedback.

We also found that the Gumbel distribution provides us a probabilistic interpretation
for scores; this interpretation can be used in a more formal model for separating HEC from
non-HEC for a future tool. It also helps absolve students’ concerns of a false positive; the
likelihood of getting more than 376 tokens (the similarity score threshold determined in
our F1 score thresholding analysis) is Pr(Y > 376) < 0.003. We therefore believe that the
likelihood of having a false positive in our results is incredibly low.

While the likelihood of false positives with TMOSS is low, our tool does not absolve
all false negatives. Figure 4.3 shows that the HEC and non-HEC student populations
are not entirely separable; there are some HEC students whose TMOSS scores fall within
the Gumbel distribution curve. Furthermore, our connectivity graph in Figure 4.6 shows
that there is a small population of non-HEC students that most likely finished their work
first, then gave their final submission to their HEC student peer. While these conspirator
students do not fall under our definition of excessive collaboration, at many institutions
their behavior would still beget instructor intervention. We hope to explore this new student
group in future work.

We have shown that the students who have a high match with online solutions comprise
a large portion of the HEC group, and students who excessively collaborate with peers
within their quarter are very low. Work remains to gauge how the HEC group would
change when we expand our analysis to compare against submissions from previous course
offerings. Moreover, we have yet to understand how the use of TMOSS changes student
behavioral patterns. We hope that the use of similarity scores on intermediate work acts
as a deterrent and helps engender an academically honest ecosystem. It would even be

possible to modify our Eclipse IDE to upload intermediate work periodically, prior to final
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submission; this would allow us to run TMOSS over the course of the assignment and

provide timely interventions for students that help them get back on track.

4.7 Summary

We have shown that TMOSS can be used to identify students who exhibit excessive col-
laboration with online or peer solutions and to understand student work patterns over the
course of an assignment. The use of MOSS is not critical; any software similarity detector
with numerical similarity scores can be used as a backend to TMOSS. TMOSS can thus
also be extended to non-programming scenarios; for example, TurnltIn similarity scores [15]
can be used to check for collaboration in essay grading.

We found that students exhibiting excessive collaboration perform worse on exams and
make more limited use of TA office hours. In addition, we have found that a Gumbel distri-
bution fits the distribution of similarity scores in the absence of any excessive collaboration.

We must emphasize that TMOSS is not a substitute for human verification; it only helps
to provide a more accurate picture of the student landscape. Nor is it intended to impose a
negative, pressuring environment on students; instead, we hope that TMOSS is an example
of how intermediate student work can be incorporated into the overall feedback system. We
hope that improvements to tools like TMOSS will simultaneously deter plagiarism efforts
and facilitate the learning process in future classrooms.

TMOSS is just one step in the direction of designing software to better understand
students in large classrooms. Such a tool separates typical students from atypical students,
and can even be used to indicate at what time a student was experiencing issues. While the
use of TMOSS in this work is to detect excessive collaboration, its analysis of intermediate
student work can be extended to provide more timely, more accurate feedback. We can
therefore identify struggling students in a large classroom, instead of waiting for them to
come to us. By reaching out to these students early on, we can give them the right resources

to achieve success.



Chapter 5

Reproducing Research Results in

Education

When we talk about tools to understand how students learn, we should consider not just
how to understand the learning process, but also how to design assignments to meet stu-
dent learning goals. For advanced students, instructors should consider what projects can
teach both engineering rigor and critical thinking, qualities that are necessary for careers in
research and industry. As the state of computing evolves worldwide, instructors must give
more thought as to how course assignments should reflect the problems that students will
encounter in the future.

In many research communities, while many acknowledge the importance of replicating
research work, there is also pushback against reporting replicated or reproduced results,
because publishing on new phenomena is associated with more impact and possibly more
prestige [6, 150]. However, when we remove the pressure of publishing new work, the process
of replicating existing research results can reap valuable educational benefits. Since 2012, as
part of the graduate networking course at Stanford, over 200 students have participated in a
course project to reproduce research results from over 40 networking papers. We have found
that through reproducing research, advanced networking students can both hone technical
skills with real systems as well as participate and contribute to the networking research

community.
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5.1 Networking education in universities

Stanford University offers two main networking courses for CS students: an introduc-
tory undergraduate class where students learn how the Internet works, including basic
principles such as packet-switching, layering, routing, congestion control (CS144: “An
Introduction to Computer Networks”, https://cs144.stanford.edu), and a graduate
class where students interested in careers in networking as engineers or researchers read
and discuss 20-30 notable research papers (CS244: “Advanced Topics in Networking”,
https://cs244.stanford.edu). Networking classes covering similar topics are prevalent
at many universities around the world; importantly, networking courses seem to differ the
most in what instructors assign for unsupervised work. For example, in most undergraduate
classes it is common for students to write programs that start with the sockets layer and
build upwards to create applications and libraries on top. At Stanford—and some other
universities—students start at the sockets layer and work their way down: Our students
build transport layers, routers, then Network Address Translation (NAT) devices, and fi-
nally download web pages from a public website to their own computer through their NAT
in their router, using their transport protocol. In our experience, students who experience
“building their own Internet” gain a thorough knowledge of how the Internet works, how
to read and implement RFCs, and how to build network systems.

For a graduate class in networking, it is more difficult to determine what to prioritize in
programming assignments. Should students build more advanced pieces of the Internet—
such as firewalls, load-balancers, and new transport layers? This gives them more experience
in building network systems, but it may not challenge their ingenuity and research skills by
allowing them to devise and test their own ideas. And so, it is more common in graduate
studies for students to undertake a more creative, open-ended project of their own design,
perhaps using a simulator, testbed, or analytical tool. In our earlier experiences with
(CS244, we opted for the latter approach and asked students to create open-ended projects
of their own design. But we frequently found the projects lacking—primarily because it is
hard to build a meaningful networking system or a persuasive prototype in such a limited
time. Often, students were overambitious in their initial project scope and were unable to
collect meaningful experimental results on incomplete prototypes. As a result, the projects
were rather incremental in nature, and the students’ educational experience seemed to be

too susceptible to their choice of project. After all, it is hard enough to build a realistic,
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interesting, and functioning networking system in a matter of weeks; it is even harder to

devise a novel one from scratch and then execute it successfully.

5.2 Why we chose reproducibility

The primary, overarching motivation for asking graduate students to reproduce published
research results is the belief that reproducing work brings educational value. Our approach is
very similar to how high school and college students study science worldwide: in conjunction
with attending lectures and reading textbooks, students reinforce their learning by repeating
well-known experiments. Although the students know and anticipate the experimental
outcomes prior to entering the classroom lab, it is widely agreed that students are more
engaged in their learning when they go through the process of reproducing experiments [78,
114, 130]. Thus, our main goal for adapting this scientific approach to our networking class
is for students to attain a detailed, in-depth understanding of a significant paper’s key ideas
and key results.

The second biggest benefit is the experience our students gain by building—or recre-
ating—the experiment for themselves. In the science community, reproducing research
generally means repeating the experiment and reproducing results identical to the original.
In our class, however, students spend much more time building and recreating the original
experiment than collecting and verifying the results. We found that our students found
recreating the experiments the most time-intensive and most fulfilling aspect of the project;
achieving identical results is something they may (or may not) undertake at the end, after
their experiment is working. We therefore distinguish the initial step of recreating the ex-
perimental infrastructure from the second step of collecting and possibly reproducing the
same results as the original authors. We rate students highly if they successfully recreate
the experiment, regardless of whether they can reproduce the same results. In fact, we
find that students learn even more when their experiments yield different results from the
original research: they must figure out where the discrepancies lie and discern if there are
unstated assumptions or inaccuracies in either their own results or the published results.
This is a fascinating, educational experience and often a good lesson in diplomacy.

There are many additional benefits to repeating experiments: if students spend sig-
nificant time studying and repeating a published experiment, it leads them to ask meta-

questions about the paper: Why did the researchers pose this problem? Why did they use
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or build a particular prototype or simulator, and why did they collect this specific set of
results? These questions allow students to understand what the researchers were thinking
about when they initially began the research, much more than they would understand by
simply reading the paper. By working through the exercise of reproducing results, students
gain a deeper understanding of the research process.

The project also gives students the essential experience of building a novel prototype,
system, emulator, or simulator, without necessarily having to pioneer an original solution.
The students already know the idea in the published work is good: it is practical and has
some value—at least enough to warrant publication at a top conference. Furthermore, there
is low risk of devising an overambitious project, as the project scope is clear; as a result, we
can expect more students to achieve satisfactory results. With a high degree of confidence,
they already know interesting results are possible, which encourages them (or perhaps goads
them via peer pressure) to complete the work.

This assignment also instills an important principle in our future researchers—that their
research results should be reproducible by others, whenever possible. If results can be re-
produced, then it is more likely to be adopted by industry, or to be extended upon by
other researchers—perhaps by directly reusing the experiment’s software. Many fields of
research have had various levels of success with promoting and supporting reproducible,
published results: in medicine and psychology, these discussions are motivated by observa-
tions that published results do not hold up when reproduced [76, 109]; meanwhile, the field
of communications and signals has well-established tools for reproducing results [30, 166].
There is a growing movement in systems research to make published results more easily
reproduced by others [26, 66]. In the field of computer science, there has been an upward
trend of including tools and methods for replication [25, 119, 145]. Our students add to
the corpus of reproduced results by providing a simple, packaged reproduction experiment;
in this manner, they can encourage the whole networking community to make results more
reproducible by others.

All of the above reasons suggest that this type of project is valuable to graduate students,

especially those preparing for a career in networking systems research or in industry.
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Day 1 Deliverable: project proposals for primary and
secondary choice

Day 3 TAs assign projects with minimal overlap.
Students contact authors with instructor help.

Weekly, 15-min TA-student meetings on project.

Day 14 Deliverable: intermediate report with structure of
final report, outline of next steps

Weekly, 15-min TA-student meetings on project.

Day 23 Deliverable: final blog post, public source code
repository, steps for reproducing

Day 28 In-class presentations of select projects

Day 31 Peer validation of another student group’s project

Figure 5.1: Reproducing Research Results project timeline in a 10-week course.

5.3 The Reproducing Research Results project

Our students work in pairs and have three weeks (out of a 10-week course) to complete the
assignment. They then have an additional week to verify each other’s projects and give
in-class presentations. Figure 5.1 shows the project timeline; we describe the main steps of
the project below.

Select a project. Each student pair starts by choosing a figure or table from a research
paper of interest that is integral to the paper’s motivation or claims. Results may include
comparing the performance of an algorithm against existing algorithms, demonstrating a
metric’s usefulness, or recording important traffic and workload data. We provide the
students with a list of suggested conferences and research publications that we think make
good examples, and we encourage students to choose more recent works, or ones that have
not yet been attempted by students in previous course offerings. At Stanford we have had
students successfully reproduce results ranging from widely cited papers such as Hedera [9]
and DCTCP [11] to traditional papers like RED [55], to unpublished but timely, relevant
industry work like SPDY [120].
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Choose a method of reproduction. We encourage students to use either the
Mininet [90] or Mahimahi [115] emulation systems for their experiment platform, largely
because they are most familiar to the instructors. Mininet is best suited for multi-node
topologies, whereas Mahimahi is good when modifying and testing congestion control pro-
tocols running over a single link. While we generally prefer students to use emulators—as
emulators exhibit more realistic network characteristics, such as real-time, live traffic han-
dling for a given node topology [66]—we also encourage the use of simulators, such as
ns-3 [68], if the scale or performance is beyond the reach of an emulator. All students are
provided with computing resources on Amazon Web Service (AWS) Elastic Compute Cloud
(EC2) to run their experiments. By requiring students to start with a standard virtual ma-
chine setup on a widely used cloud service platform, any project artifacts become easier for
others to use for replicating results.

Contact original authors. After deciding which experiments to run, we help the
students contact the authors. Opening up this communication channel between students
and researchers has two main benefits: the first is for the students, who now have a primary
source to contact regarding the tools, setup, workload and use-cases of the given experiment
or research tool. The second is for the researcher, who is now aware that their work is being
analyzed critically. Upon completion of the students’ project, the researcher will have
additional feedback on the benefits, caveats, and persistence of their findings. We discuss
anecdotal evidence on the importance of this communication later in Section 5.5.

Work with instructors and peers. Recreating other researchers’ work is non-trivial;
it is essential that course staff support the students throughout their task. In our course of
40 students we have two teaching assistants, who meet every group every week to check in
on the project status and provide guidance if needed. In some instances, we pair up students
with graduate student mentors whose expertise overlaps with the target research project.
We also require a short intermediate report in the middle of the assignment where students
describe what they have done so far, and what they plan to do for the unfinished time. This
report gives instructors an opportunity to give feedback and advise on the feasibility of any
unfinished steps.

The course ends with students giving short talks about their projects. Students present
the main highlights of their reproduced research to the whole class for ten minutes, followed
by a short Q&A session.

Write a public blog. Each group is required to document their project—successful
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or unsuccessful—and any additional findings or conclusions in a public blog post on the
course’s Reproducing Network Research blog. The blog entry must contain all the code
and workload in order for someone else to easily repeat the experiments too. And many
do: over the years, our website has been visited by the authors of the original research
paper, reviewing our students’ work, and by new researchers looking for ideas or ways to
get started in their own research (see Section 5.5 for anecdotes).

We verify the results in every blog post using peer validation: every student group is
required to replicate the results of another student group. The reproduction effort is required
to be an easy, two-step process: (1) download and install any code, and (2) click “run.” All
code must be available in public code repositories. The students therefore provide all their
software source code, experimental data, the means to generate the results, and a detailed
interpretation of their results to other researchers. They also upload a public snapshot of
their Amazon EC2 machine for easy installation and setup. The public code repositories
have proven beneficial for other researchers, who contact the students through the blog in
order to use these selected research projects as a base of inspiration or comparison for their
own work. These requirements ensure others can build on our students’ results, furthering

our goal to make more network systems research reproducible.

5.4 Overview of reproduction results

Since 2012, we have seen over a hundred student projects in reproducing networking re-
search. Most have been successful—and a few have not—but overall we have observed
that students walk away with the confidence that they can overcome difficult, technical
challenges in networking research. In this section, we summarize our experiences in more
detail.

Figure 5.2 reports how many student projects successfully recreated research experi-
ments each year, where success is defined as being able to recreate the experiment and gen-
erate a result comparable to the original research. The graph shows that a small number of
projects each year consistently fall into the “unsuccessful” category, primarily because stu-
dents were over-ambitious: they attempted reproductions in emulators unsuitable for their
project, they could not find the right tools in time, or they overestimated their abilities to
build a system from scratch. There are a few other reasons discussed later in Section 5.4.1.

The most popular research papers selected by students are shown in Table 5.1. These
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Figure 5.2: The number of successful student projects, listed by course year. Success is
defined as being able to recreate the experiment and generate comparable results.

Reproducibility
Able  Unable

Publication

TCP Opt-ack Attack [152]
Jellyfish [154]

Init CWND [47]

TCP Fast Open [134]
Low-rate TCP DoS [88]
MPTCP [135]

RCP [46]

DCTCP [11]

HTTP-based Video Streaming [73]
DCell [65]

Hedera [9]

Mosh [173]

PCC [45]

pFabric [12]

Sprout [174]
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Table 5.1: The 15 most popular research papers selected for student projects.



CHAPTER 5. REPRODUCING RESEARCH RESULTS IN EDUCATION 80

2012
eo 2013 )
g
o
£ 2014 77
[}
2
2 2015 L
O

2016 %555

0 5 10 15 20 25

Number of student groups

®Mininet wMahimahi ©ns-2 @ns-3 @Emulab ®other

Figure 5.3: Emulator and simulator platforms used by students for reproducing research.

papers were most likely selected because of their ease of setup in the emulators we chose;
most of them are variations of TCP, and some of them are application-based or topology-
based. Some experiments are more difficult to recreate than others, even if they are from the
same research paper; this accounts for some of the unsuccessful projects in Table 5.1. Other
students are more ambitious in their projects, e.g., opting to port an existing experiment
to a different emulator, which often leads to more difficulties.

Figure 5.3 summarizes the variety of emulators and simulators that students have used.
As instructors, while we encouraged the use of Mininet [90] and Mahimahi [115], some groups
used ns-2 [77], ns-3 [68], and Emulab [69] instead, often because the original research used
these platforms too, making it easier for the students to re-use existing open source code.
In some cases, students who started out using simulators ported their experiments to an
emulator in order to get real-time, realistic results, all within the three-week time span of
the project.

Availability of research code. Running an experiment typically requires two compo-
nents: the system and the experiment workload. Students can sometimes obtain both from
the authors or from online, open-source repositories; other times, they must implement it
themselves using a detailed description from a paper or technical report. Overall, we have

found that the availability of the original experimental code and workload plays a large part
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System source code Workload generation
Open-source 12 Open-source 9
Open-source but 6 Sufficient details 17
out-of-date in paper
Open-source but Student-created 14

inconsistent w/results
Contacted author
Binary available
Student-created
Not needed

NeliNoRN I V]

Table 5.2: Availability of source code and workload generation code for each paper.

in determining the likely success of reproducing results.

A summary of the availability of code and data for each of the forty unique research
papers studied by students in our course is shown in Table 5.2. Occasionally, the research
paper lacked key numbers or details about the experiment environment, so students had
to reason about additional features and generate their own network workloads. Sometimes,
the system source code was open-sourced, but upon further inspection the open-source code
produced results inconsistent with those published in the paper, and students had to resort
to developing the system from scratch. Despite these setbacks, we have found that students
who designed their own experiments gained expert intuition in how their system operated
and were thus often very successful in recreating experiments.

If they are running experiments in an emulator, students typically need to scale the
experiment (by number of nodes or by datarate) so the emulate can keep up. For example,
some research results are gathered in large datacenters with hundreds of nodes and link
speed of 10-100 Gb/s. A typical emulator can handle up to tens or hundreds of nodes, with
links running at 1-10 Gb/s at most.

5.4.1 Project successes

Our students had varying levels of success with recreating research results. Due to the
complexity of the project, it is an accomplishment in itself for students to simply get the
system up and running. We therefore have defined success in this project based on three

criteria:

1. Are the students able to recreate the experiment?
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2. Are the student-generated results and the original results similar in shape?
3. Can the students justify any discrepancies in results?

Sometimes, students are able to recreate the original work almost perfectly, subject to
scaling or computation resource limits. One student group replicated a TCP opt-ack attack?,
where the task was to create a TCP attacker sending optimistic acknowledgements (opt-
acks) to multiple victims over a bottleneck link, generating enough traffic to cause congestion
collapse (Figure 5.4a). Even though the original experiment was simulated in ns-2, the
students decided to emulate the experiment in Mininet by first designing a Mininet topology
and then programming their own opt-ack attacker in Python. They also had to adjust IP
table and ARP cache settings on Linux in order to send raw socket traffic on an Amazon
EC2 instance. Finally, they were able to produce Figure 5.4b, which shows very similar
traffic patterns to the original, simulated experiment. They explained discrepancies in their
results; in particular, they were unable to recreate the attack for more than 64 victims due
to performance limitations on an emulator for even the largest Amazon EC2 instance with
the highest compute power. They also noted that their emulated results had a more jagged
shape than the original results, perhaps due to artifacts in measurement. Overall, because
the students were able to generate emulated results very similar to the original paper’s
simulations—and gave sufficient justification for any differences—we consider the student
project a success.

Occasionally, students identify discrepancies with the original results for other reasons,
despite high confidence in their own recreation of the experiment. For example, one student
group compared the performance of ECMP and Hedera on both a hardware testbed and on
Mininet.? After contacting the original authors, the students reran the benchmark tests and
were able to exactly recreate the performance characteristics of Hedera in both the hardware
and emulated environments. However, the students consistently found their own hardware
ECMP performed significantly better than the original paper’s ECMP results. The students
reran the ECMP results with spanning tree enabled (something you would not expect in
a datacenter) and discovered that the resulting, worse performance was identical to the

results in the paper. They subsequently contacted the authors to see if they could verify

!Original work by Sherwood et al. [152]. Student blog post at https://reproducingnetworkresearch.
wordpress.com/2016/05/30/cs-244-16-misbehaving-tcp-receivers-can-cause-internet-wide
-congestion-collapse/.

2Original work by Alfares et al. [9]. Student blog post at https://reproducingnetworkresearch.
wordpress.com/2012/06/06/hedera/ and further elaborated upon in Handigol et al. [66].


https://reproducingnetworkresearch.wordpress.com/2016/05/30/cs-244-16-misbehaving-tcp-receivers-can-cause-internet-wide-congestion-collapse/
https://reproducingnetworkresearch.wordpress.com/2016/05/30/cs-244-16-misbehaving-tcp-receivers-can-cause-internet-wide-congestion-collapse/
https://reproducingnetworkresearch.wordpress.com/2016/05/30/cs-244-16-misbehaving-tcp-receivers-can-cause-internet-wide-congestion-collapse/
https://reproducingnetworkresearch.wordpress.com/2012/06/06/hedera/
https://reproducingnetworkresearch.wordpress.com/2012/06/06/hedera/

CHAPTER 5. REPRODUCING RESEARCH RESULTS IN EDUCATION 83

1le+09

1e+10 ¢
T 1e00 L7~ aa vigtims z &4 Victims
8 - ® TLLLLTE o 32 Mictims
; L L -~ .32 Victims é ) 16 Mctims
8 I S 1e+08 fuv, . I | 8 Victims
- )/ 16 Victims @ pp-ofofToooooog0000 sasta 4 Victims
@ i 8 Victims g 2 Victims
2 1e+08 o L2 & 1 Victim
& ot Vitims
s 2 VictimS
o Victim
1e407 © 1e+07 >
0 10 20 30 40 50 60 70 80 90 100 0 5 10 15 20 25 30
Seconds Seconds
(a) . (b)

Figure 5.4: A successfully recreated experiment for maximum traffic induced by a TCP
opt-ack attacker over time for multiple connected victims.! (a) Author results (Figure 7 in
the original paper); (b) student-recreated results.

their findings, but the original testbed had been torn down years ago, and there was no way
to rerun the experiment for additional verification [66]. As one of the students reflected,
“when you create a new testbed and create a new environment, there is no way to ascertain
the truths or possibilities of the results. On the other hand, if the original authors had used
an emulator, such as Mininet, maybe they could’ve packaged it..so that other people [could
use that setup for] experiments.”

Reproducing research (un)successfully. There are also cases where students are
not able to achieve all three criteria of success. Sometimes, there are limitations in the
emulation environment: while setting up an experiment for QJump [63], a student group
had to engineer multiple queueing disciplines in Mininet, a feature that did not come out-of-
box with the emulator. Another group reported issues configuring POX [105] and Mininet
in tandem when trying to recreate the switch controller topology in DCell [65]. Other times,
the age of a paper can affect modern reproductions. A group attempted to reproduce the
observation that RED maintains significantly higher throughput than Drop Tail Queueing
at low queue sizes [55]. However, they found that in most cases, Drop Tail and RED
performed equally well. After discussion with a blog commenter, the likely cause is that the
underlying TCP mechanism in modern times has evolved considerably, perhaps reducing
the relative performance of these two queueing mechanisms.

Students are also occasionally too ambitious: A pair of students tried to implement
the rate-based adaptive video streaming of FastMPC [183] in a popular open-source media

player. They began the project by successfully finding the same video and wireless traces
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Figure 5.5: Influences of student project on other parts of networking community.

used in the original experiment. However, they ran out of time trying to find an appropriate
optimizer that could solve the mixed linear programming model for FastMPC. In retrospect,
situations like these could have be avoided with timely interventions by teaching staff, who

can help students find appropriate tools, or scale down the scope of their project.

5.4.2 Participating in the community

A bonus outcome of this project is that students who work through reproducing research re-
sults play a larger role in the networking research community. While designing and running
the experiments, students may interact with the original authors, new researchers who visit
our course blog, and even developers of the emulators or simulators. We summarize the
interactions in Figure 5.5. We believe the benefits of these interactions go both ways; the
networking community at large can also benefit from these student research reproduction
projects. Original researchers can share their experiences with students to aid in the repro-
duction effort, and students can give feedback on how well the system works in different
environments. New researchers can use the blog posts and public repositories published by
students to jump-start new experiments in new research.

Interacting with platform developers. In particular, simulator and emulator de-
velopers can also treat student projects as use cases for evaluating their platform utility.
If the platform is still in development, these student projects give developers more oppor-

tunities to improve their tool. In our course, we started students with Mininet [90] and
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Mahimahi [115], emulators that were initially developed at Stanford and MIT, respectively.
When we began this project in 2012, we also received a large volume of feedback from stu-
dents regarding the usability of Mininet-Hifi, an extension of Mininet designed to give more
accurate timing information and detect when it fails to faithfully meet timing. Through this
project, students discover the advantages and disadvantages of the platform they are using
to recreate results. They can then critique differences in the results and analyze whether
the platform setup influenced the replication. When administering a research reproduction
project at other academic institutions, we encourage trying out home-grown tools, as stu-
dent projects are a valuable way of getting feedback on the robustness and accuracy of these

new tools.

5.5 Student experiences

With all of the effort involved in recreating research experiments, what’s in it for the
students? After reviewing course evaluations and blog posts, we invited some students to
share how their experiences with the project shaped their perspectives on networking and
research. Overall, students said that the project allowed them to undertake and understand
new networking topics, gain confidence in their own research abilities, and participate in
the networking community. We share some anecdotes highlighting each of these experiences
below.

Encountering an unknown facet of networking. Networking is a broad area at
the intersection of many fields, and often it is difficult for students with domain expertise
in computer science to interact with the lower layers of the networking stack without first
understanding the principles of electrical engineering and communications. This project is a
good way for students to get a quick, in-depth view of unfamiliar networking areas. A third-
year undergraduate and his partner were curious about wireless research; having come from
computer science backgrounds, neither of them knew what areas of wireless research were
often studied, but they selected a recent paper tackling Wifi handovers with MPTCP [38].
As the student reflected, he and his partner chose their particular project because it was
the best way to learn about a handover problem they had both experienced as end users.
When asked how they felt about the experience, he said, “I liked it. I specifically liked the
level of familiarity I got [with] the paper. There’s a level you can only get by reproducing it

or implementing it.” After communicating with the authors, the students managed to run
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an experiment simulation in ns-2 to confirm results illustrating the throughput of different
transport protocols during handover between two Wifi access points. After this initial
confidence, they then showed results for three Wifi access points in a three-dimensional
graph, extending the project beyond the original paper’s scope.

Understanding cutting-edge research. Senior students are also interested in learn-
ing cutting-edge research, so that they can generate ideas for their own future projects.
Reproducing research on a short timeline is a great way to interact with other researchers
and understand how to use common tools without needing to expend the rigorous engineer-
ing efforts required to achieve research-level system mastery. A pair of second-year graduate
students were inspired to reproduce the results from QJump [63] due to their mutual re-
search interests in networked systems. One of the students had attended NSDI 2015 and
had heard the authors’ presentation in person; at the time, her own research was focused
on reducing the latency of networked memory in datacenters, and she felt that QJump was
an innovative method for scheduling datacenter traffic. As she recounted, “You could tell
from their paper that they really tried to make everything reproducible.” The researchers
had published methods for recreating experiment workloads for all figures in their NSDI
publication.

However, she noted that they ultimately did not use the authors’ work directly: “Their
assumption was that [people] would reproduce the results in an actual datacenter, whereas
we did the emulation in Mininet. In the end, we did not use their scripts directly, but it
was nice to see that the authors were enthusiastic to have their work reproduced.” This pair
of students contacted the authors throughout the project to reconcile scaling and timing
differences that arose from using an emulated environment in place of a datacenter and
were ultimately successful in recreating the experiments in Mininet. The other student
commented that the original authors even “tweeted about [our final blog post], actually.”
The overall reproduction effort helped the students understand on a deeper level what types
of traffic control schemes work in datacenters. The first student mentioned that after the
course, she implemented a scheduler for her research similar to one from the project, “which
is something that I wouldn’t have done if [I had just read] the paper.”

Digging deep into workshop papers. Reproducing research also boosts student
confidence. One first-year graduate student commented on the project selection process,

saying, “you don’t want to reproduce something that requires a lot of previous knowledge
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or that is hard to reproduce, and you want something that’s interesting to you. That pro-
cess itself takes some learning.” Initially, her group selected a very complex and ambitious
project that would require significant time to engineer; eventually, they selected a work-
shop paper on a self-clocked rate adaption for multimedia (SCReAM) [82]. Using workshop
papers for a student project are sometimes more challenging than using full-length works,
perhaps because the former has a shorter, briefer publication format. However, the students
were able to use the authors’ public repository code as reference and transformed the au-
thors’ simulation into a real-time UDP-based solution on Mahimahi. While recreating the
experiment, they realized that there were parameters that functioned well for the original
simulation but not for their emulation. After adjusting these parameters, the students were
finally able to observe the same results in Mahimahi. One of the students reflected that it
was surprising to see that “papers written at this level could also be understood by students
who have taken only two courses in networking, and results can be reproduced in part.”

With this realization, she and her partner were happy with their published course blog
post, which they considered an important facet of their contribution to the overall research
work: “[From an educational standpoint,| blog posts are easier to read than papers. If
there is one cool idea from a paper that you can reproduce and put into a blog post, I think
that could be very valuable. Because in a sense you already did the set up for them, and
you wrote it in a [clearer] way.” As if confirming her newfound perspective, the authors—
whom the students did not contact during their project—incidentally came across our course
website and contacted the student and her partner to address critiques and questions that
were raised in the students’ project blog post. The students also received emails from
another graduate student to ask for additional details on running the experiment for his
own research.

Boosting experience for future careers. The process of recreating experiments
from research can be useful for fostering career skills for both academia and industry.
A now-graduated student who recreated experiments for the congestion control protocol
DCTCP [11] mentioned that interacting with Mininet was invaluable in her current indus-
try job in network emulators. She and her partner set about recreating an ns-2 simulation
of DCTCP’s performance in Mininet and came across setbacks in “the kernel version, the
amount of memory, the software version ..things that [we] didn’t really anticipate having
trouble with.” However, overcoming these struggles were valuable for her current engineer-

ing career; she said that “reading up about Mininet and being familiar with how to use it
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helped me ramp up [faster in my job] because it happens that my team builds something
similar to Mininet.” Furthermore, thinking critically about networking papers was a skill
that aided her technical conversations with coworkers: the course was “very different from
any other course I've taken...[where] you're taught principles, learn how to apply them, and
write an exam. This [course, on the other hand] would actually prepare me for the real

world.”

5.6 Summary

In this chapter, we have highlighted some of our experiences offering a graduate-level net-
working project in recreating experiments from network research. We have provided a
step-by-step guide for an example project in an advanced networking class. After conduct-
ing a series of interviews, we verified that the experience is rewarding and interesting for
students, and it gives them an opportunity to interact with researchers. In addition, we
have learned that documenting the results of these reproduction studies is an essential re-
source for both future students and the research community as a whole. We hope that the
materials presented in this chapter inspire more conversations on offering similar projects in
graduate networking curricula, as well as a broader discussion on well-scoped assignments

for advanced courses in other fields of computer science.



Chapter 6

Conclusion

In this dissertation, we have presented four contributions to understanding how students
learn during unsupervised work. Three of these contributions discuss the learning process—
what activities a student participates in while they work on assignments. The first of these,
milestones, is a method for quantifying functional progress on a CS1 coding assignment.
This quantitative metric enriches the tools that researchers have to understand the learning
process, allowing further study on relevant assignments, like open-ended ones used in CS1
classrooms today. The second and third contributions, Pensieve and TMOSS, are tools that
instructors can use immediately in their current classrooms to support their students.

These contributions are a first step to understanding how students learn on all as-
signments in today’s classrooms. We have made a breakthrough on simple graphics-based
assignments like Pyramid, but tougher tasks like Breakout, which involve human mouse
interaction and game design, remain unsolved. We have just scratched the surface on
how contemporary techniques in computer vision can help education; as machine learning
improves, we can imagine techniques from reinforcement learning, object detection, and nat-
ural language processing expanding to improve autograder systems on advanced, complex
assignments.

The tools described in this thesis are designed to understand learning process after
students submit their final work. Such tools benefit both the student, who receives more
detailed, in-depth feedback on their problem-solving process, and the instructor, who can
aggregate and understand how students interact with an assignment. We have purposefully
designed all tools to include human instructor input. A large component of higher education

today relies and benefits from human input, and it is only natural for tools designed for
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improving today’s classroom to enhance a teacher’s ability to directly help their students.

As learning environments shift towards an online experience, intelligent tutors [85, 176]
will be able to give hints to students while they work. Research today has started to explore
hint-based feedback [139], conversational tutor systems [61, 146], and adaptive learning with
question generation [67, 94]. We can easily envision classrooms where students can receive
formative feedback automatically from their learning environments, allowing students to
reflect immediately on their problem solving during the assignment. The human instructor
can then discuss the learning process in more detail after assignment submission.

The tools on learning process discussed above paint an early picture of how instructors
can transform unsupervised work in classrooms, from how to design learning environments
that collect data on learning process—here described as process repositories—to how to
deliver feedback not just on the final submission, but on the entire problem-solving process.
Our fourth contribution in this dissertation explores the design of the assignment itself,
which should continue to evolve to support the goals of higher education.

As we move into the future, the unsupervised work component of our students’ class-
room learning experience will undoubtedly evolve for the better. In order to enable this
transformation, students should be motivated to use tools that allow instructors to better
understand the learning process. For example, when using Pensieve, students receive in-
trinsic, positive reward for submitting data, in the form of useful, formative feedback for
future assignment work. However, students may view TMOSS as a tool that punishes bad
actors—where providing more information improves the tool’s ability to detect excessive
collaboration. It remains future work to design positive reinforcement systems to support
any tool that collects data on learning process—such that students are not only discouraged
from bad behavior, but also encouraged to follow good practices.

As educators, when we adopt tools to our classrooms we must consider how to motivate
students to participate and find data collection the norm. A larger question looms about how
the impact of these tools, which will collect data on and give feedback on learning process,
will stretch beyond the classroom. While instructors have huge incentives to gather more
data about their classrooms, students may refrain from sharing data about their learning
process, citing concerns of privacy and security. Both instructors and students together
must hold ongoing conversations about the connection between classroom data and student
learning. We are confident that the tools discussed in this dissertation—and tools yet

undiscovered—will improve our classrooms and help our students learn.



Appendix A

The Pyramid Assignment

This appendix contains the Pyramid assignment from Stanford University’s CS1 course
(CS106A: Programming Methodologies) from the Winter 2019 school term [124]. The Pyra-
mid assignment is assigned as part of the second homework assignment (consisting of ten

short exercises) in this 10-week course.
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Write a GraphicsProgram that draws a pyramid consisting of bricks arranged in
horizontal rows, so that the number of bricks in each row decreases by one as you move
up the pyramid, as shown in the following sample run:

J1=TE
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The pyramid should be centered at the bottom of the window and should use
constants for the following parameters:

BRICK_WIDTH The width of each brick (30 pixels)
BRICK HEIGHT The height of each brick (12 pixels)
BRICKS_IN_BASE The number of bricks in the base (14)

The numbers in parentheses show the values for this diagram, but you must be able to
change those values in your program.

Figure A.1: The Pyramid assignment handout for Stanford University’s CS1 course
(CS106A: Programming Methodologies).
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File: Pyramid. java

This file is the starter file for the Pyramid problem.
It includes definitions of the constants that match the
sample run in the assignment, but you should make sure
that changing these values causes the generated display

* X X X X X X

to change accordingly.

*/

import acm.graphics.x*;
import acm.program.*;
import java.awt.*;

public class Pyramid extends GraphicsProgram {

/**% Width of each brick in pixels */
private static final int BRICK_WIDTH = 30;

/** Height of each brick in pixels */
private static final int BRICK_HEIGHT = 12;

/** Number of bricks in the base of the pyramid */
private static final int BRICKS_IN_BASE = 14;

public void run() {
/* You fill this in. x*/
}
¥

Figure A.2: Starter code for the Pyramid assignment.




Appendix B

The Breakout Assignment

This appendix contains the Breakout assignment from Stanford University’s CS1 course
(CS106A: Programming Methodologies) from the Winter 2019 school term [124]. The

Breakout assignment is the third homework assignment in this 10-week course.
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Chris Piech Assn #3
CS 106A January 28, 2019

Assignment #3 — Breakout!
Due: 12pm on Wednesday, February 6th
This assignment should be done individually (not in pairs)

Based on a handout by Eric Roberts with some modifications by Brahm Capoor

Your job in this assignment is to write the classic arcade game of Breakout, which was invented by
Steve Wozniak before he founded Apple with Steve Jobs. It is a large assignment, but entirely
manageable as long as you break the problem up into pieces. The decomposition is discussed in this
handout, and there are several suggestions for staying on top of things in the “Strategy and tactics”
section later in this handout.

Sandcastle: Prime Checker

A key challenge when writing large programs like Breakout is how best to decompose our solutions
into manageable and effectively-implemented methods. In order to practice this skill, you’ll begin this
assignment by writing a short method that takes in a positive integer greater than 1 as an input and
returns a boolean indicating whether or not that integer is prime.

As a reminder, a prime number that is defined such that its only factors are 1 and itself. In
PrimeChecker. java, we provide a run method that tests whether or not a series of numbers are prime.
Your job is to implement the isPrime method to check whether or not the number is prime.

Sandcastle: Mouse Reporter

To get you warmed up, first write a minimal program that leverages the essential concepts needed for
Breakout. Write a MouseReporter that creates a GLabel on the left side of the screen. When the
mouse is moved the label is updated to display the current x, y location of the mouse. If the mouse is
touching the label it should turn red, otherwise it should be blue.
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You should take advantage of the setLabel method that can be called on a GLabel. If you look in
Chapter 9 (page 299) at the methods that are defined at the GraphicsProgram level, you will discover
that there is a method

public GObject getElementAt (double x, double y)

that takes a position in the window and returns the graphical object at that location, if any. If there are
no graphical objects that cover that position, getElementat returns the special constant null. If there
is more than one, getElementat always chooses the one closest to the top of the stack, which is the
one that appears to be in front on the display. The starter code for MouseReporter stores the label as
an instance variable and adds it to the screen. Make sure to submit your MouseReporter with Breakout.

The Breakout game

In Breakout, the initial configuration of the world appears as shown in the first pane of the image on
the previous page. The colored rectangles in the top part of the screen are bricks, and the slightly
larger rectangle at the bottom is the paddle. The paddle is in a fixed position in the vertical dimension,
but moves back and forth across the screen along with the mouse until it reaches the edge of its space.

A complete game consists of three turns. On each turn, a ball is launched from the center of the
window toward the bottom of the screen at a random angle. That ball bounces off the paddle and the
walls of the world, in accordance with the physical principle generally expressed as “the angle of
incidence equals the angle of reflection” (which turns out to be very easy to implement as discussed
later in this handout). Thus, after two bounces—one off the paddle and one off the right wall—the
ball might have the trajectory shown in the second diagram. (Note that the dotted line is there to show
the ball’s path and won’t appear on the screen.)

As you can see from the second diagram, the ball is about to collide with one of the bricks on the
bottom row. When that happens, the ball bounces just as it does on any other collision, but the brick
disappears. The third diagram shows what the game looks like after that collision and after the player
has moved the paddle to put it in line with the oncoming ball.

The play on a turn continues in this way until one of two conditions occurs:

1. The ball hits the lower wall, which means that the player must have missed it with the paddle. In
this case, the turn ends and the next ball is served if the player has any turns left. If not, the game
ends in a loss for the player.

2. The last brick is eliminated. In this case, the player wins, and the game ends immediately.

After all the bricks in a particular column have been cleared, a path will open to the top wall. When
this situation occurs, the ball will often bounce back and forth several times between the top wall and
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the upper line of bricks without the user ever having to worry about hitting the ball with the paddle.
This condition is called “breaking out” and gives meaning to the name of the game.

It is important to note that, even though breaking out is a very exciting part of the player’s experience,
you don’t have to do anything special in your program to make it happen. The game is simply

operating by the same rules it always applies: bouncing off walls, clearing bricks, and otherwise
obeying the laws of physics.

The starter file

The starter project for this assignment has a little more in it than it has in the past, but none of the
important parts of the program. The starting contents of the Breakout. java file appear in Figure 1
(on the next page). This file takes care of the following details:

¢ It includes the imports you will need for writing the game.

e It defines the named constants that control the game parameters, such as the dimensions of the
various objects. Your code should use these constants internally so that changing them in your file
changes the behavior of your program accordingly.

Success in this assignment will depend on breaking up the problem into manageable pieces and getting
each one working before you move on to the next. The next few sections describe a reasonable staged
approach to the problem.
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Figure 1. The Breakout. java starter file has many constants

public class Breakout extends GraphicsProgram {

// Dimensions of the canvas, in pixels

// These should be used when setting up the initial size of the game,
// but in later calculations you should use getWidth() and getHeight()
// rather than these constants for accurate size information.

public static final double CANVAS WIDTH = 420;

public static final double CANVAS HEIGHT = 600;

// Number of bricks in each row
public static final int NBRICK COLUMNS = 10;

// Number of rows of bricks
public static final int NBRICK ROWS = 10;

// Separation between neighboring bricks, in pixels
public static final double BRICK_SEP = 4;

// Width of each brick, in pixels

public static final double BRICK WIDTH = Math.floor (
(CANVAS_WIDTH - (NBRICK_COLUMNS + 1.0) * BRICK_SEP) /
NBRICK_COLUMNS) 7

// Height of each brick, in pixels
public static final double BRICK HEIGHT = 8;

// Offset of the top brick row from the top, in pixels
public static final double BRICK Y OFFSET = 70;

// Dimensions of the paddle
public static final double PADDLE WIDTH = 60;
public static final double PADDLE HEIGHT = 10;

// Offset of the paddle up from the bottom
public static final double PADDLE Y OFFSET = 30;

// Radius of the ball in pixels
public static final double BALL RADIUS = 10;

// The ball's vertical velocity.
public static final double VELOCITY Y = 3.0;

// The ball's minimum and maximum horizontal velocity; the bounds of the
// initial random velocity that you should choose (randomly +/-).

public static final double VELOCITY X MIN = 1.0;

public static final double VELOCITY X MAX = 3.0;

// Animation delay or pause time between ball moves (ms)
public static final double DELAY = 1000.0 / 60.0;

// Number of turns
public static final int NTURNS = 3;




APPENDIX B. THE BREAKOUT ASSIGNMENT

99

_5_

Set up the bricks

Before you start playing the game, you have to set up the various pieces. Thus, it probably makes
sense to implement the run method as two method calls: one that sets up the game and one that plays
it. An important part of the setup consists of creating the rows of bricks at the top of the game, which
look like this:

The number, dimensions, and spacing of the bricks are specified using named constants in the starter
file, as is the distance from the top of the window to the first line of bricks. The only value you need
to compute is the x coordinate of the first column, which should be chosen so that the bricks are
centered in the window, with the leftover space divided equally on the left and right sides. The color
of the bricks remain constant for two rows and run in the following rainbow-like sequence: RED,
ORANGE, YELLOW, GREEN, CYAN.

This part of the assignment is almost exactly like the pyramid problem from Assignment #2. The parts
that are only a touch more difficult are that you need to fill and color the bricks. This extra complexity
is more than compensated by the fact that there are the same number of bricks in each row, and you
don’t have to change the coordinate calculation from row to row.

Create the paddle

The next step is to create the paddle. At one level, this is considerably easier than the bricks. There is
only one paddle, which is a filled GRect. You even know its position relative to the bottom of the
window.

The challenge in creating the paddle is to make it track the mouse. Mouse tracking makes use of the
event-driven model discussed in Chapter 9 of the textbook. Here, however, you only have to pay
attention to the x coordinate of the mouse because the y position of the paddle is fixed. The only
additional wrinkle is that you should not let the paddle move off the edge of the window. Thus, you’ll
have to check to see whether the x coordinate of the mouse would make the paddle extend beyond the
boundary and change it if necessary to ensure that the entire paddle is visible in the window.

This entire part of the program takes fewer than 10 code lines, so it shouldn’t take so long. The hard
part lies in reading the Graphics chapter and understanding what you need to do.

Create a ball and get it to bounce off the walls

At one level, creating the ball is easy, given that it’s just a filled coval. The interesting part lies in
getting it to move and bounce appropriately. You are now past the “setup” phase and into the “play”
phase of the game. To start, create a ball and put it in the center of the window. As you do so, keep in
mind that the coordinates of the Goval do not specify the location of the center of the ball but rather its
upper left corner. The mathematics is not any more difficult, but may be a bit less intuitive.

The program needs to keep track of the velocity of the ball, which consists of two separate
components, which you will presumably declare as instance variables like this:

private double vx, vy;

The velocity components represent the change in position that occurs on each time step. Initially, the
ball should be heading downward, and you might try a starting velocity of +3.0 for vy (remember that
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y values in Java increase as you move down the screen). The game would be boring if every ball took
the same course, so you should choose the vx component randomly.

In line with our discussion of generating random numbers this week, you should simply do the
following:

1. Declare an instance variable rgen, which will serve as a random-number generator:
private RandomGenerator rgen = RandomGenerator.getInstance() ;
Remember that instance variables are declared outside of any method but inside the class.
2. Initialize the vx variable as follows:

vx = rgen.nextDouble (1.0, 3.0);
if (rgen.nextBoolean(0.5)) vx = -vx;

This code sets vx to be a random double in the range 1.0 to 3.0 and then makes it negative half the
time. This strategy works much better for Breakout than calling

nextDouble (-3.0, +3.0)

which might generate a ball going more or less straight down. That would make life far too easy
for the player.

Once you’ve done that, your next challenge is to get the ball to bounce around the world, ignoring
entirely the paddle and the bricks. To do so, you need to check to see if the coordinates of the ball
have gone beyond the boundary, taking into account that the ball has a nonzero size. Thus, to see if
the ball has bounced off the right wall, you need to see whether the coordinate of the right edge of the
ball has become greater than the width of the window; the other three directions are treated similarly.
For now, have the ball bounce off the bottom wall so that you can watch it make its path around the
world. You can change that test later so that hitting the bottom wall signifies the end of a turn.

Computing what happens after a bounce is extremely simple. If a ball bounces off the top or bottom
wall, all you need to do is reverse the sign of vy. Symmetrically, bounces off the side walls simply
reverse the sign of vx.

Checking for collisions

Now comes the interesting part. In order to make Breakout into a real game, you have to be able to
tell whether the ball is colliding with another object in the window. As scientists often do, it helps to
begin by making a simplifying assumption and then relaxing that assumption later. Suppose the ball
were a single point rather than a circle. In that case, how could you tell whether it had collided with
another object? What happens if you call

getElementAt (x, y)

where x and y are the coordinates of the ball? If the point (x, y) is underneath an object, this call
returns the graphical object with which the ball has collided. If there are no objects at the point
(x, y), you’ll get the value null.

So far, so good. But, unfortunately, the ball is not a single point. It occupies physical area and
therefore may collide with something on the screen even though its center does not. The easiest thing
to do—which is in fact typical of the simplifying assumptions made in real computer games—is to
check a few carefully chosen points on the outside of the ball and see whether any of those points has
collided with anything. As soon as you find something at one of those points, you can declare that the
ball has collided with that object.

In your implementation, the easiest thing to do is to check the four corner points on the square in
which the ball is inscribed. Remember that a Goval is defined in terms of its bounding rectangle, so
that if the upper left corner of the ball is at the point (x, y), the other corners will be at the locations
shown in this diagram:
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These points have the advantage of being outside the ball—which means that getElementat can’t
return the ball itself —but nonetheless close enough to make it appear that collisions have occurred.
Thus, for each of these four points, you need to:

1. Call getElementat on that location to see whether anything is there.

2. If the value you get back is not null, then you need look no farther and can take that value as the
Gobject with which the collision occurred.

If getElementat returns null for a particular corner, go on and try the next corner.

4. If you get through all four corners without finding a collision, then no collision exists.

It would be very useful to write this section of code as a separate method
private GObject getCollidingObject()

that returns the object involved in the collision, if any, and null otherwise. You could then use it in a
declaration like

GObject collider = getCollidingObject() ;

which assigns that value to a variable called collider.

From here, the only remaining thing you need to do is decide what to do when a collision occurs.
There are only two possibilities. First, the object you get back might be the paddle, which you can test
by checking

if (collider == paddle)

If it is the paddle, you need to bounce the ball so that it starts traveling up. If it isn’t the paddle, the
only other thing it might be is a brick, since those are the only other objects in the world. Once again,
you need to cause a bounce in the vertical direction, but you also need to take the brick away. To do
s0, all you need to do is remove it from the screen by calling the remove method.

Finishing up
If you’ve gotten to here, you’ve done all the hard parts. There are, however, a few more details you
need to take into account:

* You’ve got to take care of the case when the ball hits the bottom wall. In the prototype you’ve been
building, the ball just bounces off this wall like all the others, but that makes the game pretty hard to
lose. You’ve got to modify your loop structure so that it tests for hitting the bottom wall as one of
its terminating conditions.

* You’ve got to check for the other terminating condition, which is hitting the last brick. How do you
know when you’ve done so? Although there are other ways to do it, one of the easiest is to have
your program keep track of the number of bricks remaining. Every time you hit one, subtract one
from that counter. When the count reaches zero, you must be done. In terms of the requirements of
the assignment, you can simply stop at that point, but it would be nice to give the player a little
feedback that at least indicates whether the game was won or lost.




APPENDIX B. THE BREAKOUT ASSIGNMENT

102

8-

You’ve got to experiment with the settings that control the speed of your program. How long
should you pause in the loop that updates the ball? Do you need to change the velocity values to get
better play action?

You’ve got to test your program to see that it works. Play for a while and make sure that as many
parts of it as you can check are working. If you think everything is working, here is something to
try: Just before the ball is going to pass the paddle level, move the paddle quickly so that the paddle
collides with the ball rather than vice-versa. Does everything still work, or does your ball seem to
get “glued” to the paddle? If you get this error, try to understand why it occurs and how you might
fix it.

Strategy and tactics

Here are some survival hints for this assignment:

Start as soon as possible. This assignment is due in just over a week, which will be here before you
know it. If you wait until the day before this assignment is due, you will have a very hard time
getting it all together.

Implement the program in stages, as described in this handout. Don’t try to get everything working
all at once. Implement the various pieces of the project one at a time and make sure that each one is
working before you move on to the next phase.

Don’t try to extend the program until you get the basic functionality working. The following
section describes several ways in which you could extend the implementation. Several of those are
lots of fun. Don’t start them, however, until the basic assignment is working. If you add extensions
too early, you’ll find that the debugging process gets really difficult.

Possible extensions

This assignment is perfect for those of you who are looking for + or (dare I say it) ++ scores, because
there are so many possible extensions. Remember that if you are going to create a version of your
program with extensions, you should submit two versions of the assignment: the basic version that
meets all the assignment requirements and the extended version. Here are a few ideas of for possible
extensions (of course, we encourage you to use your imagination to come up with other ideas as well):

Add sounds. You might want to play a short bounce sound every time the ball collides with a brick
or the paddle. This extension turns out to be very easy. The starter project contains an audio clip
file called bounce . au that contains that sound. You can load the sound by writing

AudioClip bounceClip = MediaTools.loadAudioClip ("bounce.au") ;
and later play it by calling

bounceClip.play () ;
The Java libraries do make some things easy.

Add messages. The game is more playable if at the start it waits for the user to click the mouse
before serving each ball and announces whether the player has won or lost at the end of the game.
These are just GLabel objects that you can add and remove at the appropriate time.

Improve the user control over bounces. The program gets rather boring if the only thing the player
has to do is hit the ball. It is far more interesting, if the player can control the ball by hitting it at
different parts of the paddle. The way the old arcade game worked was that the ball would bounce
in both the x and y directions if you hit it on the edge of the paddle from which the ball was coming.

Add in the “kicker.” The arcade version of Breakout lured you in by starting off slowly. But, as
soon as you thought you were getting the hang of things, the program sped up, making life just a bit
more exciting. As one example of this, you might consider adding this feature by doubling the
horizontal velocity of the ball the seventh time it hits the paddle, figuring that’s the time the player
is growing complacent.
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e Keep score. You could easily keep score, generating points for each brick. In the arcade game,
bricks were more valuable higher up in the array, so that you got more points for red bricks than
cyan bricks. You could display the score underneath the paddle, since it won’t get in the way there.

e Use your imagination. What else have you always wanted a game like this to do?
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