
by

A thesis submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

in the

GRADUATE DIVISION

of the

UNIVERSITY of CALIFORNIA at BERKELEY

Committee in charge:

1995

Scheduling Algorithms for Input-Queued Cell Switches

Nicholas William McKeown

B.Eng (University of Leeds) 1986

M.S. (University of California at Berkeley) 1992

Engineering-Electrical Engineering

and Computer Sciences

Professor Jean Walrand, Chair
Professor Pravin P. Varaiya
Professor Ronald W. Wolff

Chair Date

Date

Date

University of California at Berkeley

1995

This thesis of Nicholas William McKeown is approved:

 1995

by

Scheduling Algorithms for Input-Queued Cell Switches

Nicholas William McKeown

Abstract

by

Doctor of Philosophy in Engineering-Electrical Engineering and Computer Sciences

University of California at Berkeley

1

The algorithms described in this thesis are designed to schedule cells in a very high-speed,

parallel, input-queued crossbar switch. We present several novel scheduling algorithms that we

have devised, each aims to match the set of inputs of an input-queued switch to the set of outputs

more efficiently, fairly and quickly than existing techniques.

In Chapter 2 we present the simplest and fastest of these algorithms: SLIP — a parallel algo-

rithm that uses rotating priority (“round-robin”) arbitration. SLIP is simple: it is readily imple-

mented in hardware and can operate at high speed. SLIP has high performance: for uniform i.i.d.

Bernoulli arrivals, SLIP is stable for any admissible load, because the arbiters tend todesynchro-

nize. We present analytical results to model this behavior. However, SLIP is not always stable and

is not always monotonic: adding more traffic can actually make the algorithm operate more effi-

ciently. We present an approximate analytical model of this behavior. SLIP prevents starvation: all

contending inputs are eventually served. We present simulation results, indicating SLIP’s perfor-

mance. We argue that SLIP can be readily implemented for a 32x32 switch on a single chip.

In Chapter 3 we presenti-SLIP, an iterative algorithm that improves upon SLIP by converging

on a maximal size match. The performance ofi-SLIP improves with up to log2N iterations. We

show that although it has a longer running time than SLIP, ani-SLIP scheduler is little more com-

plex to implement.

In Chapter 4 we describe maximum or maximalweight matching algorithms based on the

occupancy of queues, or waiting times of cells. These algorithms are stable over a wider range of

traffic loads. We describe two algorithms,longest queue first(LQF) andoldest cell first (OCF) and

consider their performance. We prove that LQF, although too complex to implement in hardware,

is stable under all admissible i.i.d. offered loads. We consider two implementable, iterative algo-

rithms i-LQF andi-OCF which converge on a maximal weight matching. Finally, we present two

interesting implementations of the Gale-Shapley algorithm, designed to solve thestable marriage

problem.

Scheduling Algorithms for Input-Queued Cell Switches

Nicholas William McKeown

Professor Jean Walrand, Chair

iii

To my parents,

and

My Wife,
My Love,
My Le.

Table of Contents
iv

Acknowledgements ... viii

CHAPTER 1
Introduction ..1

1 Problem Statement ...1

2 Motivation..4

2.1 Datapath for an Input-Queued Switch ..4

2.2 Controlling the Datapath...5

3 Background..7

3.1 Input vs. Output Queueing..7

3.2 Overcoming Head-of-Line Blocking ..8

3.3 Previous Scheduling Work ...9

3.3.1 Maximum Size Matching..9

3.3.2 Neural Network Algorithms ...10

3.3.3 Scheduling into the Future..11

3.3.4 Parallel Iterative Matching..12

3.4 Simple Comparison of Previous Techniques..14

4 Outline of Thesis..16

CHAPTER 2
The SLIP Algorithm
with a Single Iteration ..18

1 Introduction..18

2 Basic Round-Robin Matching Algorithm..20

2.1 Performance of RRM for Bernoulli Arrivals ..20

3 The SLIP Algorithm ..23

4 Simulated Performance of SLIP ..24

4.1 Bernoulli Traffic ...24

4.2 “Bursty” Traffic ..26

4.3 As a Function of Switch Size..28

4.4 Burst Reduction ..30

5 Analysis of SLIP Performance...32

v

5.1 Convergence to Time-Division Multiplexing Under Heavy Load32

5.2 Desynchronization of Arbiters..32

5.3 Stability of SLIP ...35

5.3.1 Drift Analysis of a 2x2 SLIP Switch: First Approximation38

5.3.2 Drift Analysis of a 2x2 SLIP Switch: Second Approximation...41

5.4 Approximate Delay Model for 2x2 SLIP Switch41

6 Variations on SLIP ...44

6.1 Prioritized SLIP ..44

6.2 Threshold SLIP ...45

6.3 Weighted SLIP..46

6.4 Least Recently Used ...46

7 Implementing SLIP..49

7.1 Prioritized SLIP ..51

CHAPTER 3
The SLIP Algorithm
with Multiple Iterations ...53

1 Introduction..53

2 The Iterative SLIP Matching Algorithm..54

2.1 Description..54

2.2 Updating Pointers..55

2.3 Properties ..56

3 Simulated Performance of Iterative SLIP..57

3.1 How Many Iterations?...57

3.2 Bernoulli Traffic ...58

3.3 Bursty Traffic..63

3.4 As a Function of Switch Size..65

4 Variations of Iterative SLIP ...66

4.1 Iterative SLIP with LRU Accept Arbiters ..66

4.2 Separate Pointers for each Iteration ..69

5 Implementing Iterative SLIP..69

vi

CHAPTER 4
Weighted Matching
Algorithms ..72

1 Introduction..72

2 Maximum Weight Matching ..73

2.1 Starvation with LQF ...74

2.2 Performance of LQF and OCF Algorithms ..75

2.2.1 Uniform Workload ..75

2.2.2 Non-Uniform Workload..75

2.2.3 Stability of 2x2 Switch ...77

2.2.4 Stability of NxN Switch..80

3 Iterative Maximal Weight Matching Algorithms...81

3.1 i-LQF...81

3.2 Properties ..82

3.3 i-OCF ..82

3.4 Properties ..83

3.5 Performance of i-LQF and i-OCF...83

3.5.1 Uniform Workload ..83

3.5.2 Nonuniform Workload ..83

3.5.3 Stability for 2x2 Switch ..83

3.6 Implementation of i-LQF and i-OCF..84

4 Stable Marriages ..87

4.1 The Stable Marriage Problem ...88

4.2 The Gale-Shapley Algorithm..88

4.3 Analogy to Switch Scheduling..89

4.3.1 The GS-LQF Algorithm..90

4.3.2 The GS-OCF Algorithm ...90

4.4 Performance of GS-LQF and GS-OCF Algorithms................................91

4.5 Implementation of GS-LQF and GS-OCF..91

4.6 Egalitarian Stable Marriage ..92

References ...94

vii

APPENDIX 1
Arbiter Synchronization for Single-Iteration SLIP97

APPENDIX 2
Stability of Single-Iteration
SLIP Algorithm ..101

1 Single-Step Drift Analysis of 2x2 Switch with 1 Queue101

1.1 First Approximation..101

1.2 Second Approximation ...103

2 Matrix Geometric Solution for 2x2 Switch with 1 Queue.............................106

APPENDIX 3
Stability of 2x2
Switch ..109

1 Stability of 2x2 Switch with 3 Active Flows (Theorem 4.2).........................109

1.1 Definitions...109

1.2 Problem statement...110

1.3 Solution...110

1.4 Stable Algorithms ...111

2 Relative Queue Sizes (Theorem 4.3) ...111

APPENDIX 4
Stability of NxN Switch
with i.i.d. Arrivals ..115

1 Definitions..115

2 Main Theorem..116

3 Proof...116

viii

Acknowledgements

For their continued guidance, support and encouragement throughout my time at Berkeley, I

would like to thank my adviser Jean Walrand and Pravin Varaiya. I greatly appreciate the freedom

and collegial respect you have given me and your other students.

Numerous discussions with Richard Edell lead to the design of the datapath that provided the

main motivation for this thesis. Richard, you are a truly gifted engineer and it has been a pleasure

to be your colleague.

I am grateful to Professor Tom Anderson for discussions about the iterative properties of the

SLIP algorithm, and to Professor Venkat Anantharam for suggesting the proof in Appendix 4. I

also wish to acknowledge the helpful feedback and suggestions of Chuck Thacker (DEC SRC), the

inventor of parallel iterative matching. I thank Dana Randall for introducing me to the stable mar-

riage problem, and Matthew J. Salzman (CMU) for kindly donating his code to implement the

maximum match algorithms used in many of my simulations.

I am extremely grateful to John Limb, for whom I worked at Hewlett-Packard Labs in Bristol,

England. John, you have been a constant source of inspiration to me; and without your encourage-

ment I would not have gone back to school to pursue my Ph.D.

I would like to give thanks to the numerous other people at Hewlett-Packard Labs who sup-

ported me over the years, in particular John Taylor, Daniel Pitt, Steve Wright and Gwenda Ward.

Last, and definitely most, I want to thank my family. Words cannot express my thanks to my

wife and parents for all your love and encouragement. I dedicate this thesis to you.

1

CHAPTER 1

Introduction

1 Problem Statement

Consider the “input-queued cell switch” in Figure 1.1 connectingm inputs to n outputs. The

arrival processAi(t) at inputi, 1≤i≤m, is a discrete-time process of fixed sized packets, called

cells.1 At the beginning of each time slot, either zero or one cells arrive at each input. Each cell

contains an identifier that indicates which outputj, 1≤j≤n, it is destined for. When a cell destined

for output j arrives at input i it is placed in the FIFO queueQ(i,j) which has occupancy Li,j(t). We

shall define the arrival processAi,j(t) as the process of arrivals at inputi for outputj at rateλi,j, and

the set of arrival processes A(t) = {Ai(t); 1≤j≤m}. A(t) is consideredadmissibleif no input or out-

put is oversubscribed, i.e. , otherwise it isinadmissible.

The FIFO queues are served as follows. A scheduling algorithm selects a conflict-free match

M between the set of inputs and outputs such that each input is connected to at most one output

and each output is connected to at most one input. At the end of the time slot, if inputi is con-

nected to outputj, one cell is removed fromQ(i,j) and sent to outputj. Clearly, the departure pro-

cess from outputj , Dj(t), rateµj is also a discrete-time process with either zero or one cell

1. Unless otherwise stated, we will assume thatAi(t) is stationary and ergodic.

λi j, 1<
i

∑ λi j, 1<
j

∑,

CHAPTER 1 Introduction 2

departing from each output at the end of each time slot. We shall define the departure process

Di,j(t), rateµi,j, as the process of departures from outputj that were received from inputi.

To find a matching M, the scheduling algorithm solves a bipartite graph matching problem. An

example of a bipartite graph is shown in Figure 1.2.

All of the scheduling algorithms described in this thesis attempt to match the set of inputs I, of

an input-queued switch, to the set of outputs J. For our application, we will assume that

, where N is the number of ports. In each algorithm, if the queueQ(i,j) is

non-empty,Li,j(t) > 0 and there is an edge in the graph G between inputi and outputj. The mean-

ing of the weights depend on the algorithm. For example, in some algorithms the weight is always

equal to one, indicating whether the queue is empty or non-empty. In other algorithms, the weight

wi,j may be integer-valued, equalling for exampleLi,j(t).

There are a number of properties that we desire for all scheduling algorithms:

• Efficiency —An efficient algorithm is one that serves as many input-queues as possible
in each match. In general, the maximum matching problem does not have a solution that

Input 1
Q(1,1)

Q(1,n)

A1(t)

Input m
Q(m,1)

Q(m,n)

Am(t)

D1(t)

Dn(t)

Output 1

Output n

Matching, M

Figure 1.1 Components of an Input-Queued Cell-Switch.

A1,1(t)

I m J n N= = = =

CHAPTER 1 Introduction 3

can be calculated quickly in hardware, and so each of the algorithms that we describe
finds a sub-maximum match Msub, where: .

• Stability — For a given admissible traffic pattern, we define an algorithm asstable if the
expected occupancy of every input queueQ(i,j) is finite, i.e. . For a
given algorithm, we call a stationary traffic patternsustainable if it does not cause the
switch to become unstable.

• No Starvation — We shall describe a non-empty input-queue asstarved if, for a given
traffic pattern and scheduling algorithm, it remains unserved indefinitely.

• Fast — To achieve the highest bandwidth switch, it is important that the scheduling
algorithm does not become the performance bottleneck. The algorithm should therefore
find a match as quickly as possible.

• Simple to implement —If the algorithm is to be fast in practice, it must be implemented
in special-purpose hardware. The implementation complexity includes the amount of
state that the scheduler must maintain, the amount of logic required to make a decision
based on the state, and the amount of communication required to update the state at the
beginning and end of each cell time.

Inputs, I Outputs, J

1

2

3

n

Graph, G Matching, M

a) Example of G forI = m and J = n. b) Example of matching M on G.

Inputs, I Outputs, J

1

2

3

n

1

2

3

m

1

2

3

m

Figure 1.2 Define G = [V,E] as an undirected graph connecting the set of vertices V with the set of edges E.
The edge connecting verticesi, 1≤i≤m and j, 1≤j≤n has an associated weight denotedwi,j. Graph G is
bipartite if the set of inputs I = {i: 1≤i≤m} and outputs J = {i: 1≤j≤n} partition V such that every edge has
one end in I and one end in J. Matching M on G is any subset of E such that no two edges in M have a
common vertex. Amaximum matching algorithmis one that finds the matching Mmaxwith the maximum
total size or total weight.

w1,1

Msub Mmax≤

E Li j, t()[] ∞<

CHAPTER 1 Introduction 4

2 Motivation

The scheduling algorithms described in this thesis are applicable to all input-queued switches.

However, the work was motivated by a single goal: to find a simple algorithm that can schedule

cells in a high-speed, parallel input-queued crossbar switch. We may partition such a switch into

two main components: the datapath and the scheduler. Designing a high-bandwidth datapath is

straightforward; it is the scheduling algorithm that is complex. To illustrate this point we begin

with the example of an extremely high-bandwidth datapath that we have devised. We will then

describe how this datapath can be controlled by a central scheduler. We then discuss the problem

of scheduling cells for such a datapath.

2.1 Datapath for an Input-Queued Switch

An example of a high-speed datapath is shown in Figure 1.3. This switch is shown to illustrate

that it is feasible to build a small switch with extremely high aggregate bandwidth in current

CMOS technology. Figure 1.3(a) shows the general structure of the switch: switch port cards con-

nect to a central switching hub; when cells arrive at the switch port card, they are buffered while

waiting to be transferred through the hub. As shown in Figure 1.3(b), the switching hub is com-

posed of a stack of identical bit-slices and for a small number of ports (for example, 32 ports or

less) is readily implemented using a crossbar switch. Plan and side elevations of each bit-slice are

shown in detail in Figure 1.3(c). Each bit-slice is a single layer printed circuit board containing a

1-bit NxN switching chip. The switching chip is connected to every port card via a two-bit connec-

tor: one bit to receive from and one bit to transmit to the port card.

The main advantages of this switch architecture are:

• The bit-slice is extremely simple. No leads need to cross, reducing crosstalk and allow-
ing the slice to be constructed from a single layer printed circuit board.

• The lead lengths connecting each port card to the central switch are all of identical and
minimum length. This reduces skew and the effect of reflections, enabling high data rates
and means that each bit-slice can be small. For example, a slice for a 32-port switch could
be just 2 inches in diameter.

• By switching multiple bits in parallel, extremely high aggregate bandwidths are achiev-
able. For example, for a 32-port switch with 32 bit-slices and a clock-rate of 100MHz for

CHAPTER 1 Introduction 5

each switching chip (easily achievable in current CMOS technology), an aggregate band-
width of 100Gbps is achievable. In the extreme, if the parallel path is as wide as a single
ATM cell (424 bits), a 32 port switch operating at 100MHz would have an aggregate
bandwidth in excess of 1 terabit per second!

2.2 Controlling the Datapath

It is necessary for the datapath to be configured at the beginning of each cell time. In this

design, we assume that a centralized scheduler examines the state of the input queues and selects a

conflict-free match between inputs and outputs. This configuration is then loaded into all bit-slices

in parallel, as shown in Figure 1.4.

Figure 1.3 The datapath for a parallel, bit-sliced input-queued switch.

Buffer Buffer

c) Each bit-slice contains a single switch bit-
slice chip, a 2-bit connector to each port card
(one bit for each direction). This example
shows a single 4x4 bit chip.

d) Detail of construction of bit-slice. This ex-
ample only shows a single edge connector.

a) The switch consists of a central, vertical hub.
Each interface card connects radially into the
hub. This example shows a 4-port switch.

b) The central hub consists of multiple,
identical bit-slices stacked vertically. This
example shows a stack of 4 bit-slices.

CHAPTER 1 Introduction 6

In Figure 1.5 we consider the number of connections to and from each port and the centralized

scheduler, assuming that the scheduler maintains N2 state bits indicating whether each input queue

is empty or non-empty. At the beginning of each cell time, each input port may receive at most one

new arrival. If as a result of the arrival input queueQ(i,j) changes from empty to non-empty, then

input i must notify the scheduler, passing the valuej. It may do this with bits, and one extra

Figure 1.4 Extension of datapath to control configuration.

a) A centralized scheduler deter-
mines the configuration of the
crossbar and loads it vertically
through the hub.

b) Each slice is connected to the
slice above and below so that the
switch configuration can be
loaded in parallel to all slices.

Scheduler

Figure 1.5 Connections to and from each port and a centralized scheduler.

1+logN
1

Empty➞Non-empty

Control signals
from each port

to scheduler

Control signals
from scheduler

to each portNlogN

To
crossbar

1+logN

Choice
State of

Input Queues
Scheduler

Non-empty➞Empty

Nlog

CHAPTER 1 Introduction 7

bit to indicate that the value is valid. At the end of the arbitration time the scheduler must notify

each input at most one output that it may transmit a cell to, once again requiring bits.

The scheduling decision may result inQ(i,j) changing from non-empty to empty, requiring inputi

to indicate this to the scheduler. Because the scheduler knows which outputj was scheduled, input

i requires only 1 bit to indicate this information.

The scheduler must also indicate its decision to the switch datapath. It may do this by notify-

ing each output which input it is connected to, requiring a total of NlogN bits.1 The crossbar loads

this configuration by turning on or off each switching element.

3 Background

3.1 Input vs. Output Queueing

The long-standing view has been that input-queued switches are impractical because of poor

performance. If FIFO queues are used to queue cells at each input, only the first cell in each queue

is eligible to be forwarded. As a result, FIFO input queues suffer fromhead of line (HOL) block-

ing; if the cell at the front of the queue is blocked, other cells in the queue cannot be forwarded to

other unused inputs. It is well known that for an input-queued switch with Bernoulli i.i.d. arrivals

with destinations uniformly distributed over all outputs the maximum achievable throughput is

limited to just 58% when the number of ports is large [22]. For periodic traffic, HOL blocking can

lead to even worse performance [33] and as a result the standard approach has been to abandon

input queueing and instead use output queueing.

With output queueing the bandwidth of the internal interconnect is increased, allowing multi-

ple cells to be forwarded at the same time to the same output, and queued there for transmission on

the output link. The main advantage of output queueing is that all cells are delayed by a fixed

amount making it possible to control delay through the switch. This is why schemes that schedule

cells to provide absolute or statistical performance guarantees assume output queueing [8], [10],

1. Alternatively, the scheduler may notify the datapath for each input which output it is connected to. For unicast traffic
this would be sufficient and equivalent. However, if the datapath is used for multicast traffic, an input may be connected
to multiple outputs requiring a list of outputs to configure an input. Because an output can still receive a cell from at most
one input, it is still sufficient to indicate to each output which input is connected to.

1 Nlog+

CHAPTER 1 Introduction 8

[29], [30], [31], [44], [45]. This is not generally possible with input-queued switches due to varia-

tions in delay caused by contention for the switching fabric and queueing at the input.The main

disadvantage of output queueing is that for a N-port switch, the internal interconnect and output

queues must operate at N times the line rate. In applications where the number of ports is large or

the line rate is high, this makes output queueing impractical.

3.2 Overcoming Head-of-Line Blocking

Our work is motivated by the desire to achieve the highest data rate for a given technology.

This forces us to consider only input-queued switches and to try and overcome the limitations of

HOL blocking. Many techniques have been suggested for reducing HOL blocking, for example by

considering the first K cells in the FIFO queue, where K>1 [6], [19], [23]. Although these schemes

can improve throughput, they are highly sensitive to traffic arrival patterns and perform no better

than regular FIFO queueing when the traffic is bursty.

But HOL blocking can be eliminated entirely by using a simple buffering strategy at each

input port. Rather than maintain a single FIFO queue for all cells, each input maintains a separate

queue for each output [3], [24], [40], as shown in Figure 1.6. HOL blocking is eliminated because

Figure 1.6 Head of line blocking can be eliminated by using a separate queue for each output at each input.

Input Cell Buffers

Arriving
N

Tail
Ptr

Tail
Ptr

Head
Ptr

Head
Ptr

Input 1
Input 2

Input N

Cells

Switch Fabric

CHAPTER 1 Introduction 9

a cell cannot be held up by a cell queued ahead of it that is destined for a different output. This

implementation is slightly more complex, requiring N FIFOs to be maintained by each input

buffer. But no additional speedup is required: at most one cell can arrive and depart from each

input in a cell time.

3.3 Previous Scheduling Work

In this section we summarize a selection of scheduling algorithms for input-queued switches

described in the literature. All of these algorithms are for switches that avoid HOL blocking using

the scheme described above. Each algorithm attempts to find either a maximumsize1 matching, or

attempts to schedule a cell on arrival at the earliest possible time in the future.

3.3.1 Maximum Size Matching

The maximum size matching for a bipartite graph can be found by solving an equivalent net-

work flow problem [41]. We will call this algorithmmaxsize. There exist many algorithms for

solving these problems, the most efficient currently known converges in time and is

described in [17].2 The problem with this algorithm is that although it is guaranteed to find a max-

imum match, for our application it is too complex to implement and takes too long to complete.

It is important to note that a maximumsize matching is not necessarily desirable. First, under

admissible traffic it can lead to instability and unfairness, particularly for non-uniform traffic pat-

terns. An example of this behavior for a 2x2 switch is shown in Figure 1.7(a). Arrivals to the

switch are i.i.d. Bernoulli arrivals and the performance was obtained using simulation. Even

though the traffic is admissible, it cannot be sustained by the maximum size matching algorithm.3

Second, underinadmissible traffic, the maximum size matching algorithm can lead tostarvation.

An example of this behavior is shown in Figure 1.7(b). It is clear that because all three queues are

permanently occupied, the algorithm will always select the “cross” traffic: input 1 to output 2 and

input 2 to output 1.

1. In some literature, the maximumsize matching is called the maximumcardinality matching or just the maximum
bipartite matching.

2. This algorithm is equivalent to Dinic’s algorithm [9].

3. Later, we will look at particular values under which the maximum size matching algorithm is unstable.

O n5 2/()

CHAPTER 1 Introduction 10

3.3.2 Neural Network Algorithms

Hopfield neural networks have also been used to approximate maximum size matchings for

bipartite graphs [2], [5], [34], [42]. For an N-port switch, the neural network comprises N2 neu-

rons; each neuron is implemented by an analog amplifier and RC circuit. At the beginning of each

cell time, the neural net is loaded with the state matrix, V = [vi,j] wherevi,j = 1 if , else

vi,j = 0. For example, in [2] the circuit is designed to minimize the following quadratic energy

function [18]:

(1.1)

A, B, C are positive parameters selected by simulation to ensure convergence of the network.

The first term in Equation 1.1 is minimized when a solution has at most a single non-zero element

per row and ensures that at most one cell is chosen per input. Likewise, the second term is mini-

mized when a solution has at most a single non-zero element per column and ensures that at most

one cell is chosen per output. The third term is minimized when the number of non-zero elements

in the solution is maximized.

Figure 1.7 Example ofinstabilityusing a maximum size matching algorithm for a 2x2 switch with 3 offered
flows.

b) Under aninadmissible workload, the
maximum size match will always serve just
two queues,starving the flow from input 1
to output 1.

λ1 1, 1=

λ1 2, 1=

λ2 1, 1=

µ1 1, 0=

µ1 2, 1=

µ2 1, 1=

a) Even under anadmissible workload of
Bernoulli arrivals, the maximum size match
can be unstable.

λ1 1, 0.48=

λ1 2, 0.44=

λ2 1, 0.44=

µ1 1, 0.43=

µ1 2, 0.44=

µ2 1, 0.44=

Li j, t() 0>

E
A
2
--- v

ij
v
il

l 1=
l j≠

N

∑
j 1=

N

∑
i 1=

N

∑ B
2
--- v

ij
v
kj

k 1=
k i≠

N

∑
i 1=

N

∑
j 1=

N

∑ C
2
--- N v

ij
–()

j 1=

N

∑
i 1=

N

∑+ +=

CHAPTER 1 Introduction 11

The Hopfield neural network will usually, but not always, converge on a maximum size match.

Occasionally, the network will find a suboptimal match, settling on a local minimum of the energy

function. Our results from a simulation of [2] suggest that for a 16x16 switch the match never dif-

fers from the maximum size match by more than one connection and that the algorithm converges

rapidly. We will call this algorithmneural. Results from the simulation of an almost identical

scheme, designed in 2µm CMOS, reported a maximum convergence time of 200ns when N=8

[42]. The main problem with this approach is that it is analog, requiring careful design of amplifi-

ers and RC circuits to ensure that the network will converge and that it will not favor some connec-

tions over others. However, although we shall not consider this method further in this thesis, we

believe that this method is promising for prioritized and multicast traffic.

3.3.3 Scheduling into the Future

Several schemes have been proposed in which the time that a cell will be transmitted across

the switch is decided when the cell arrives [1], [24], [35], [37], [38], [39]. We will describe two of

these schemes, which are representative of the others.

The first scheme described by Obara in [37], consists of two phases: request and arbitration.

We will call this schemeFuture 0. The scheduler for outputj consists of a counter, Tj representing

the next time in the future that this output is not scheduled. When the output receives a request at

time t, it returns the current value Tj to the requesting input and increments Tj by one. This

ensures that the output is reserved at time Tj for the input. The input buffers the cell in an ordered

list of departure times, tagging the cell for departure at time Tj. However, the input may have

already received a value Tk = Tj, j≠k, from some other outputk at some timet’≤ t. In this case, the

input must attempt to schedule this cell again in the next cell time. The advantage of this scheme is

that the implementation complexity of the output scheduler is low, requiring only a counter that

can be incremented by up to N per cell time. As described in [37], it is straightforward to pipeline

this scheme for very high-bandwidth or large switches.

But even for Bernoulli i.i.d. arrivals with destinations uniformly distributed over outputs, this

scheme achieves a throughput of just 65%, only slightly higher than for FIFO queueing. This is

CHAPTER 1 Introduction 12

because under high load, many reservations made by the output schedulers are not used by any

input.

In an attempt to improve the throughput of this scheme, the authors in [24], propose a second

scheme which we will callFuture 1. An enhancement ofFuture 0, this scheme returns unusable

reservation times to the outputs for recycling. Each output maintains a list of recycled time slots.

When it receives a request, an output first considers its list of recycled time slots; if there is a time

slot on the list that has not been previously granted to the requesting input, the slot is returned. If

there is no suitable slot time on the list, the output returns the value of a counter Tj as before and

increments the counter by one.

Under simulation, the authors find a dramatic increase in throughput; with Bernoulli i.i.d.

arrivals, a throughput in excess of 95% can be achieved even if the recycling list is limited to just

one cell. But the scheme is difficult to implement in hardware, requiring counters and lists that can

be accessed by up to N requesting inputs in parallel.

3.3.4 Parallel Iterative Matching

Parallel Iterative Matching (PIM) was developed by DEC Systems Research Center for the

16-port, 1Gbps AN2 switch [3]. Because it forms the basis of the novel algorithms described later,

we will describe the scheme in detail and consider some of its performance characteristics.

PIM usesrandomness to avoid starvation, and to reduce the number of iterations needed to

converge on a maximal matching. PIM attempts to quickly converge on a conflict-free match in

multiple iterations, where each iteration consists of three steps. All inputs and outputs are initially

unmatched and only those inputs and outputs not matched at the end of one iteration are eligible

for matching in the next. The three steps of each iteration operate in parallel on each output and

input and are shown in Figure 1.8. The steps are:

Step 1. Request. Each unmatched input sends a request toevery output for which it
has a queued cell.

Step 2. Grant. If an unmatched output receives any requests, it grants to one byran-
domly selecting a request uniformly over all requests.

CHAPTER 1 Introduction 13

Step 3. Accept. If an input receives a grant, it accepts one by selecting an output among
those that granted to this output.

By considering only unmatched inputs and outputs, each iteration only considers connections

not made by earlier iterations.

Note that in step (2) above the independent output schedulersrandomlyselect a request among

contending requests. This has three effects: first the authors in [3] show that each iteration will

match or eliminate on average at least of the remaining possible connections and thus the algo-

rithm will converge to a maximal match in iterations. Second, it ensures that all requests

will eventually be granted. As a result, no input queue is starved. Third, it means that no memory

or state is used to keep track of how recently a connection was made in the past. At the beginning

k=2 requests

g=2 grants

Figure 1.8 An example of the three steps that make up one iteration of the PIM scheduling algorithm [3]. In
this example, the first iteration does not match input 4 to output 4, even though it does not conflict with other
connections. This connection would be made in the second iteration.

a) Step 1:Request. Each input makes a request to
each output for which it has a cell. This is shown
here as a graph with all weights,wi,j = 1.

Input 1
L(1,1) = 1
L(1,2) = 4

Input 3
L(3,2) = 2
L(3,4) = 1

Input 4
L(4,4) = 3

b) Step 2:Grant. Each output selects an input
uniformly among those that requested it. In
this example, inputs 1 and 3 both requested
output 2. Output 2 chose to grant to input 3.

c) Step 3:Accept. Each input selects an out-
put uniformly among those that granted to it.
In this example, outputs 2 and 4 both granted
to input 3. Input 3 chose to accept output 2.

3
4

O Nlog()

CHAPTER 1 Introduction 14

of each cell time, the match begins over, independently of the matches that were made in previous

cell times. Not only does this simplify our understanding of the algorithm, but it also makes analy-

sis of the performance straightforward: there is no time-varying state to consider, except for the

occupancy of the input queues.

But using randomness comes with its problems. First, it is difficult and expensive to imple-

ment at high speed: each scheduler must make a random selection among the members of a vary-

ing set. Second, for unsustainable traffic it can lead to unfairness between connections. An extreme

example of unfairness for a 2x2 switch under an inadmissible load is shown in Figure 1.9. We will

see examples later for which PIM and some other algorithms are unfair for admissible but unsus-

tainable traffic. Finally, PIM does not perform well for a single iteration: it limits the throughput to

just 63%, only slightly higher than for a FIFO switch. This is because the probability that an input

will remain ungranted is , hence as N increases, the throughput tends to .

Although the algorithm will often converge to a good match after several iterations, the time to

converge may affect the rate at which the switch can operate. We would prefer an algorithm that

performs well with just a single iteration.

3.4 Simple Comparison of Previous Techniques

We conclude this chapter with a simple comparison of the performance under simulation1 for

the algorithms described above. We present results for each algorithm when the arrival process

1. All of the simulation results presented in this there were obtained using a slotted-time ATM simulator, written in C.

λ1 1, 1=

λ1 2, 1=

λ2 1, 1=

µ1 1,
1
4
---=

µ1 2,
3
4
---=

µ2 1,
3
4
---=

Figure 1.9 Example of unfairness for PIM under heavy, inadmissible load with more than one iterations.

N 1–
N

------------- 
  N

1 1
e
---– 63%≈

CHAPTER 1 Introduction 15

Ai(t) at each input consists of independent Bernoulli trials. Figure 1.10 indicates the latency as a

function of offered load for each algorithm as well as for FIFO and pure output queueing.

The worst performance is given by FIFO queueing, with the input queues becoming

unbounded for an offered load greater than 60%1. At the other extreme, output queueing repre-

sents the best performance and is stable for an offered load arbitrarily close to 100%.

1. As shown in [23], the throughput tends to 58% from above, as N tends to infinity.

Figure 1.10 Comparison of latency as a function of offered load for several scheduling algorithms, using
simulation. 16x16 switch, arrivals at each input are Bernoulli i.i.d. trials for each cell time. Cell destinations
are uniformly distributed over all outputs. All arrival processes are independent.

20 30 40 50 60 70 80 90 100
0.1

1

10

100

 Offered Load (%)

A
ve

ra
ge

 L
at

en
cy

 (
C

el
ls

)

FIFO

PIM 1

PIM 4

Future 0

Future 1

Neural

Maximum

Output

CHAPTER 1 Introduction 16

Among the algorithms that attempt to achieve a maximum size match, the highest throughput

is achieved unsurprisingly by themaxsize1 algorithm. It is interesting to note that under high

offered load, the performance ofmaxsizeis indistinguishable from output queueing. This is

because the input-queues are almost invariably occupied, resulting in a perfect match between

inputs and outputs on every iteration. At the other extreme, PIM 1 (PIM with a single iteration)

performs poorly, as expected. But with just four iterations, PIM 4 is a significant improvement

remaining stable with an offered load in excess of 95%.

Future 0performs slightly better than FIFO queueing saturating at just 65%, while the recy-

cling of Future 1(with a list size of just 1) enables it to sustain an offered load in excess of 95%.

4 Outline of Thesis

Now that we have described the main features and limitations of existing scheduling algo-

rithms we will, in the next three chapters, present several novel scheduling algorithms that we

have devised. It is the objective of each algorithm to match the set of inputs of an input-queued

switch to the set of outputs more efficiently, fairly and quickly than existing techniques.

Chapter 2 presents the simplest and fastest of these algorithms: SLIP. The SLIP algorithm is

similar to PIM, but uses rotating priority (“round-robin”) arbitration to schedule each active input

and output in turn. The main characteristic of SLIP is its simplicity: it is readily implemented in

hardware and can operate at high speed. For uniform i.i.d. Bernoulli arrivals, SLIP has the appeal-

ing property that it is stable for any admissible load. We explain how this property arises from the

tendency of the arbiters todesynchronize with respect to each other, and present some analytical

results to model this behavior. SLIP, however, is not stable for all admissible arrival processes.

Surprisingly, we also find that its behavior is not always monotonic: under specific conditions,

adding more traffic can actually make the algorithm operate more efficiently. We examine this at

length, presenting an approximate analytical model to describe this behavior. We present numer-

ous simulation results, indicating how SLIP’s performance varies as a function of switch size and

1. maxsize was implemented using a randomized version of the O(N3) augmenting path algorithm [41].

CHAPTER 1 Introduction 17

traffic “burstiness”. Finally, we argue that a SLIP scheduler for a 32x32 switch can be readily

implemented at high speed on a single VLSI chip with current technology.

Chapter 3 presents an iterative version of SLIP. Calledi-SLIP, this algorithm attempts in each

iteration to add connections not made by earlier iterations. The resulting match converges on a

maximal match — the largest achievable match without rearranging connections. We find that the

performance ofi-SLIP increases significantly with the number of iterations, but only up to a point.

Beyond log2N iterations, there is on average negligible improvement in performance. To avoid

starvation careful attention must be paid to the way that the pointers are updated ini-SLIP and so

we examine several variations of the algorithm, all designed to prevent starvation. Finally, we

show that although it has a longer running time, ani-SLIP scheduler is little more complex than a

single-iteration SLIP scheduler.

We conclude in Chapter 4 by describing algorithms that consider more information per queue,

for example the occupancy of the queue, or the waiting time of queued cells. These algorithms find

the maximum or maximalweight matching. Each algorithm gives preference to queues with a

larger occupancy or to cells that have been waiting longest. We find these algorithms to be stable

over a wider range of traffic loads. In particular, we describe two maximum weight match algo-

rithms, longest queue first(LQF) andoldest cell first (OCF) and consider their performance. We

prove that the LQF algorithm is stable for all admissible i.i.d. arrival, and conjecture that both

algorithms, although too complex to implement in hardware, are stable under all admissible,

ergodic arrival processes. We consider two implementable, iterative algorithmsi-LQF andi-OCF

which, with sufficient iterations, converge on a maximal weight matching. Implementations of

both algorithms are presented. Finally, we present two interesting implementations of the Gale-

Shapley algorithm, designed to solve thestable marriage problem.

18

CHAPTER 2

The SLIP Algorithm

with a Single Iteration

1 Introduction

In this chapter we introduce, describe and evaluate the SLIP algorithm — a novel algorithm

for scheduling cells in input-queued switches. This chapter concentrates on the behavior of SLIP

with just a single iteration per cell time. In the next chapter we consider SLIP with multiple itera-

tions.

The SLIP algorithm uses rotating priority (“round-robin”) arbitration to schedule each active

input and output in turn. The main characteristic of SLIP is its simplicity: it is readily implemented

in hardware and can operate at high speed.

Before describing SLIP, we begin this chapter with a description of the basic round-robin

matching (RRM) algorithm. We show that RRM performs poorly and demonstrate this with some

examples. In Section 3 we introduce the SLIP algorithm as a variation of RRM. We show that the

performance of SLIP for uniform traffic is surprisingly good; in fact, for uniform i.i.d. Bernoulli

arrivals, SLIP with a single iteration is stable for any admissible load. This is the result of a phe-

nomenon that we encounter repeatedly in this chapter: the arbiters in SLIP have a tendency to

desynchronize with respect to one another.

CHAPTER 2 The SLIP Algorithm with a Single Iteration 19

As was observed for themaxsizealgorithm in Chapter 1, SLIP can become unstable for admis-

sible non-uniform traffic. In Section 5 we illustrate this with a 2x2 switch. For non-uniform i.i.d.

Bernoulli arrivals we find offered loads for which SLIP performsworse than themaxsizealgo-

rithm and offered loads for which SLIP performsbetter. We examine in detail a region of opera-

tion in which SLIP behaves non-monotonically: increasing offered load can actually decrease the

average queueing delay. We develop an analytical model describing this behavior, based on a sim-

plified version of the switch. We expand this model in Section 5.4 to analyze the delay perfor-

mance of a 2x2 SLIP switch.

In Section 6 we propose some variations on the basic SLIP algorithm, suitable for a number of

different applications. Finally, in Section 7 we describe the implementation of a centralized SLIP

scheduler, arguing that with current technology it is feasible to implement a 32x32 port scheduler

on a single chip.

CHAPTER 2 The SLIP Algorithm with a Single Iteration 20

2 Basic Round-Robin Matching Algorithm

The basic round-robin (RRM) algorithm is designed to overcome two problems in PIM:com-

plexity andunfairness. Implemented as priority encoders, the round-robin arbiters are much sim-

pler and can perform faster than random arbiters. The rotating priority aids the algorithm in

assigning bandwidth equally and more fairly among requesting connections.

The RRM algorithm, like PIM, consists of three steps. But rather than arbitraterandomly, the

input and output arbiters for RRM make their selection according to a deterministic round-robin

schedule. As shown in Figure 2.1, for an NxN switch each round-robin schedule contains N

ordered elements. The three steps of arbitration are:

Step 1. Request. Each input sends a request to every output for which it has a queued cell.

Step 2. Grant. If an output receives any requests, it chooses the one that appears next in a
fixed, round-robin schedule starting from the highest priority element. The output notifies
each input whether or not its request was granted. The pointer to the highest priority
element of the round-robin schedule is incremented (modulo N) to one location beyond
the granted input.

Step 3. Accept. If an input receives a grant, it accepts the one that appears next in a fixed,
round-robin schedule starting from the highest priority element. The pointer to the
highest priority element of the round-robin schedule is incremented (modulo N) to one
location beyond the accepted output.

2.1 Performance of RRM for Bernoulli Arrivals

As an introduction to the performance of the RRM algorithm, Figure 2.2 shows the average

delay as a function of offered load for uniform i.i.d. Bernoulli arrivals. For an offered load of just

63% the round-robin algorithm becomes unstable. This is similar to but worse than the PIM algo-

rithm with a single iteration.

The reason for the poor performance of RRM lies in the rules for updating the pointers at the

output arbiters. We illustrate this with an example, shown in Figure 2.3. Both inputs 1 and 2 are

under heavy load and receive a new cell for both outputs during every cell time. But because the

output schedulers move in lock-step, only one input is served during each cell time. The sequence

of requests, grants, and accepts for four consecutive cell times are shown in Figure 2.4. Note that

gi

ai

CHAPTER 2 The SLIP Algorithm with a Single Iteration 21

the grant pointers change in lock-step: in cell time 1 both point to input 1 and during cell time 2

both point to input 2etc. This synchronization phenomenon leads to a maximum throughput of

just 50%.

As an example of the effect of synchronization under a random arrival pattern, Figure 2.5

shows the number of synchronized output arbiters as a function of offered load for a 16x16 switch

with i.i.d Bernoulli arrivals. The graph plots the number of non-uniquegi’s, i.e. the number of out-

1

2
2

a) Step 1:Request. Each input makes a request to each output for which it has a cell.

Step 2:Grant. Each output selects the next requesting input at or after the pointer in the round-robin
schedule. Arbiters are shown here for outputs 2 and 4. Inputs 1 and 3 both requested output 2. Since

 output 2 grants to input 1.g2 andg4 are updated to favor the input after the one that is granted.g2 1=

Input 1
L(1,1) = 1
L(1,2) = 4

Input 3
L(3,2) = 2
L(3,4) = 1

Input 4
L(4,4) = 3

c) When the arbitration has completed, a match-
ing of size two has been found. Note that this is
less than the maximum sized matching of three.

b) Step 3:Accept. Each input selects at
most one output. The arbiter for input 1 is
shown. Since input 1 accepts output
1. a1 is updated to point to output 2.

a1 1=

3

4

1

2
4

3

4

1

2
1

3

4

g2

g4

a1

FIGURE 2.1 Example of the three steps of the RRM matching algorithm.

CHAPTER 2 The SLIP Algorithm with a Single Iteration 22

put arbiters that clash with another arbiter. Under low offered load cells arriving for outputj will

find gj in a random position, equally likely to grant to any input. The probability that for all

 is which for N=16 implies that the expected number of arbiters with the same

highest-priority value is 9.9. This agrees well with the simulation result for RRM in Figure 2.5. As

the offered load increases, synchronized output arbiters tend to move in lock-step and the degree

of synchronization changes only slightly.

FIGURE 2.2 Performance of RRM and SLIP compared with PIM for i.i.d Bernoulli arrivals with destinations
uniformly distributed over all outputs. Results obtained using simulation for a 16x16 switch. The graph shows the
average delay per cell, measured in cell times, between arriving at the input buffers and departing from the switch.

30 40 50 60 70 80 9021 99
0.1

1

10

100

1e+03

Offered Load (%)

A
vg

 C
el

l L
at

en
cy

 (
C

el
ls

)

FIFO

PIM 1

RRM

SLIP

gj gk≠

k j≠ N 1–
N

------------- 
  N 1–

CHAPTER 2 The SLIP Algorithm with a Single Iteration 23

3 The SLIP Algorithm

The SLIP algorithm is a variation on RRM designed to reduce the synchronization of the out-

put arbiters. SLIP achieves this by not moving the grant pointers unless the grant is accepted lead-

ing to a desynchronization of the arbiters under high load. SLIP is identical to RRM except for a

condition placed on updating the grant pointers. TheGrant step of RRM is changed to:

Step 2. Grant. If an output receives any requests, it chooses the one that appears next in a
fixed, round-robin schedule starting from the highest priority element. The output notifies
each input whether or not its request was granted.The pointer to the highest priority
element of the round-robin schedule is incremented (modulo N) to one location beyond
the granted input if and only if the grant is accepted in Step 3.

This small change to the algorithm leads to the following properties of SLIP:

Property 1. Lowest priority is given to the most recently made connection. This is
because when the arbiters move their pointers, the most recently granted (accepted) input
(output) becomes the lowest priority at that output (input). If inputi successfully connects
to outputj, bothai andgj are updated and the connection from inputi to outputj becomes
the lowest priority connection in the next cell time.

Property 2. No connection is starved. This is because an input will continue to request an
output until it is successful. The output will serve at most N-1 other inputs first, waiting at
most N cell times to be accepted by each input. Therefore, a requesting input is always
served in less than N2 cell times.

Property 3. Under heavy load, all queues with a common output have the same through-
put. This is a consequence of Property 2: the output pointer moves to each requesting
input in a fixed order, thus providing each with the same throughput.

λ1 1, λ1 2, 1= =

λ2 1, λ2 2, 1= =

µ1 1, µ1 2, 0.25= =

µ2 1, µ2 2, 0.25= =

FIGURE 2.3 2x2 switch with RRM algorithm under heavy load. Synchronization of output arbiters leads to a
throughput of just 50%.

gi

CHAPTER 2 The SLIP Algorithm with a Single Iteration 24

But most importantly, this small change prevents the output arbiters from moving in lock-step

leading to a dramatic improvement in performance.

4 Simulated Performance of SLIP

4.1 Bernoulli Traffic

To illustrate the improvement in performance of SLIP over RRM, Figure 2.2 shows the perfor-

mance of the two algorithms under uniform i.i.d. Bernoulli arrivals. Under low load, SLIP’s per-

g1

g2

are the grant pointers,
a1

a2

are the accept pointers,

i1
i2

R j1 j2
j1 j2

means:
Input 1 requests outputs 1 and 2

Input 2 requests outputs 1 and 2 
 

j1
j2

G i1
i1

means:
Output 1 grants to input 1

Output 2 grants to input 1 
 

i1
i2

A j2
j1

means:
Input 1 accepts output 2

Input 2 accepts output 1 
 

Cell 1:
g1

g2

1

1
=

a1

a2

1

1
=,

i1
i2

R j1 j2
j1 j2

j1
j2

G i1
i1

i1 A j1→ →

Cell 2:
g1

g2

2

2
=

a1

a2

2

1
=,

i1
i2

R j1 j2
j1 j2

j1
j2

G i2
i2

i2 A j1→ →

Cell 3:
g1

g2

1

1
=

a1

a2

2

2
=,

i1
i2

R j1 j2
j1 j2

j1
j2

G i1
i1

i1 A j2→ →

Cell 4:
g1

g2

2

2
=

a1

a2

1

2
=,

i1
i2

R j1 j2
j1 j2

j1
j2

G i1
i1

i2 A j2→ →

FIGURE 2.4 Illustration of low throughput for RRM caused by synchronization of output arbiters. Note that pointers
[gi] stay synchronized, leading to a maximum throughput of just 50%.

Key:

CHAPTER 2 The SLIP Algorithm with a Single Iteration 25

formance is almost identical to RRM and FIFO; arriving cells usually find empty input queues,

and on average there are only a small number of inputs requesting a given output. As the load

increases, the number of synchronized arbiters decreases (see Figure 2.5), leading to a large sized

match. In fact, under uniform 100% offered load the SLIP arbiters adapt to a time-division multi-

plexing scheme, providing a perfect match and 100% throughput.

FIGURE 2.5 Synchronization of output arbiters for RRM and SLIP for i.i.d Bernoulli arrivals with destinations
uniformly distributed over all outputs. Results obtained using simulation for a 16x16 switch.

0 10 20 30 40 50 60 70 80 90 100
0

1

2

3

4

5

6

7

8

9

10

11

Offered Load (%)

A
vg

 N
um

be
r

of
 S

yn
ch

ro
ni

ze
d

O
ut

pu
t S

ch
ed

ul
er

s

RRM

SLIP

CHAPTER 2 The SLIP Algorithm with a Single Iteration 26

Figure 2.6 is an example for a 2x2 switch showing how under heavy traffic the arbiters adapt

to an efficient time-division multiplexing schedule.

4.2 “Bursty” Traffic

Real network traffic is highly correlated from cell to cell [32] and so in practice, cells tend to

arrive in bursts, corresponding perhaps to a packet that has been segmented or a packetized video

frame. Many ways of modeling bursts in network traffic have been proposed [16], [21], [4], [32].

Recently, Lelandet al. [32] have demonstrated that measured network traffic is bursty at every

level making it important to understand the performance of switches in the presence of bursty traf-

fic.

We illustrate the effect of burstiness on SLIP using an on-off arrival process modulated by a 2-

state Markov-chain. The source alternately produces a burst of full cells (all with the same destina-

tion) followed by an idle period of empty cells. The bursts and idle periods contain a geometrically

distributed number of cells.

Figure 2.7 shows the performance of SLIP under this arrival process for a 16x16 switch, com-

paring it with the performance under uniform i.i.d. Bernoulli arrivals. As we would expect, the

FIGURE 2.6 Illustration of 100% throughput for SLIP caused by desynchronization of output arbiters. Note that
pointers [gi] become desynchronized at the end of Cell 1 and stay desynchronized, leading to an alternating cycle of 2
cell times and a maximum throughput of 100%.

Cell 1:
g1

g2

1

1
=

a1

a2

1

1
=,

i1
i2

R j1 j2
j1 j2

j1
j2

G i1
i1

i1 A j1→ →

Cell 2:
g1

g2

2

1
=

a1

a2

2

1
=,

i1
i2

R j1 j2
j1 j2

j1
j2

G i2
i1

i1
i2

A j2
j1

→ →

Cell 3:
g1

g2

1

2
=

a1

a2

1

2
=,

i1
i2

R j1 j2
j1 j2

j1
j2

G i1
i2

i1
i2

A j1
j2

→ →

Cell 4:
g1

g2

2

1
=

a1

a2

2

1
=,

i1
i2

R j1 j2
j1 j2

j1
j2

G i2
i1

i1
i2

A j2
j1

→ →

CHAPTER 2 The SLIP Algorithm with a Single Iteration 27

increased burst size leads to a higher queueing delay. In fact, the average latency isproportional to

the expected burst length.

Although not shown here, we have also compared the performance of SLIP with other algo-

rithms for this traffic model. Our results suggest that for all the algorithms described in this thesis,

the increase in average queueing delay for input-queued switches is approximately proportional to

the expected burst length. In fact, the performance of the input-queued switch scheduling algo-

rithms become more and more alike and can become similar to the performance of an output-

FIGURE 2.7 The performance of SLIP under 2-state Markov-modulated Bernoulli arrivals. All cells within a burst are
sent to the same output. Destinations of bursts are uniformly distributed over all outputs.

20 30 40 50 60 70 80 90 100
0.1

1

10

100

1e+03

1e+04

1e+05

Offered Load (%)

A
vg

 L
at

en
cy

 p
er

 C
el

l (
C

el
ls

)

Bernoulli

Burst=16

Burst=32

Burst=64

CHAPTER 2 The SLIP Algorithm with a Single Iteration 28

queued switch. This similarity indicates that the performance for bursty traffic is not heavily influ-

enced by the queueing policy. Burstiness tends to concentrate the conflicts on outputs rather than

inputs: each burst contains cells destined for the same output and each input will be dominated by

a single burst at a time. As a result, the performance is limited by output contention.

4.3 As a Function of Switch Size

Themaxsize algorithm described in Chapter 1 is known to have a running time of O(N2.5) and

the PIM algorithm is known to converge to a maximal match in a (serial) running time of

O(NlogN)1. In the next chapter we will consider the improvement in performance of SLIP when

we allow more iterations per cell time. But for asingle iteration in which the running time is fixed,

we can expect the performance to degrade as the number of ports is increased.

Figure 2.8 shows the average latency imposed by a SLIP scheduler as a function of offered

load for switches with 4, 8, 16 and 32 ports. As expected, the performance degrades with the num-

ber of ports. But the performance degrades differently under low and heavy loads. For a fixed low

offered load, the queueing delay converges to a constant value. However, for a fixed heavy offered

load the increase in queueing delay isproportional to N.

The reason for these different characteristics under low and heavy load lies once again in the

degree of synchronization of the arbiters. Under low load, arriving cells find the arbiters in random

positions and SLIP performs in a similar manner to the single iteration version of PIM. The proba-

bility that the cell is scheduled to be transmitted immediately is proportional to the probability that

no other cell is waiting to be routed to the same output. Ignoring the (small) queueing delay under

low offered load, the number of contending cells for each output is approximately

 which for large N converges to . Hence, for constant smallλ, the

queueing delay converges to a constant. Under heavy load, the algorithm serves each FIFO once

everyN cycles and the queues will behave similarly to an M/D/1 queue with arrival rates and

1. PIM is designed to run on N parallel arbiters for which it has a running time O(logN). Its running time on a single
arbiter is therefore O(NlogN).

λ 1
N 1–

N
------------- 

  N 1–
– 

  λ 1 1
e
---– 

 

λ
N

CHAPTER 2 The SLIP Algorithm with a Single Iteration 29

deterministic service time cell times. For an M/G/1 queue with random service timesS, arrival

rateλ and service rateµ the queueing delay is given by

. (1)

FIGURE 2.8 The performance of SLIP as function of switch size. Uniform i.i.d. Bernoulli arrivals.

30 40 50 60 70 80 9021 99
0.1

1

10

100

1e+03

Offered Load (%)

A
ve

ra
ge

 L
at

en
cy

 p
er

 C
el

l (
C

el
ls

)

Size=4

Size=8

Size=16

Size=32

N

d
λE S2()

2 1 λ
µ
---– 

 
----------------------=

CHAPTER 2 The SLIP Algorithm with a Single Iteration 30

So, for the SLIP switch under a heavy load of Bernoulli arrivals the delay will be approxi-

mately

 (2)

which is proportional toN.

4.4 Burst Reduction

In Section 4.2 we saw the not surprising result that burstiness increases queueing delay. In

addition to the performance of a single switch for bursty traffic, it is important to consider the

effect that the switch has on other switches downstream. Intuitively, if a switch decreases the aver-

age burst length of traffic that it forwards, then we can expect it to improve the performance of its

downstream neighbor. We next examine the burst-reduction properties of SLIP.

There are many definitions of burstiness, for example the coefficient of variation [43], bursti-

ness curves [28], maximum burst length [7], or effective bandwidth [31]. In this section, we use

the same measure of burstiness that we used when generating traffic in Section 4.2: the average

burst length. We define a burst of cells at the output of a switch as the number of consecutive cells

that entered the switch at the same input.

SLIP is a deterministic algorithm, serving each connection in strict rotation. We therefore

expect that bursts of cells at different inputs contending for the same output will become inter-

leaved and the burstiness will be reduced. This is indeed the case, as shown in Figure 2.9. The

graph shows the average burst length at the switch output as a function of offered load. Arrivals

are on-off processes modulated by a 2-state Markov chain with average burst lengths of 16, 32 and

64 cells, as described in Section 4.2.

Our results indicate that SLIP reduces the average burst length, and will tend to be more burst-

reducing as the offered load increases. This is because the probability of switching between multi-

ple connections increases as the utilization increases. When the offered load is low, arriving bursts

do not encounter output contention and the burst of cells is passed unmodified. As the load

d
λN

2 1 λ–()
----------------------=

CHAPTER 2 The SLIP Algorithm with a Single Iteration 31

increases, the contention increases and bursts are interleaved at the output. In fact, if the offered

load exceeds approximately 70%, the average burst length drops to exactly one cell. This indicates

that the output arbiters have become desynchronized and are operating as time-division multiplex-

ers, serving each input in turn.

FIGURE 2.9 Average burst length at switch output as a function of offered load. The arrivals are on-off processes
modulated by a 2-state DTMC. Results are for a 16x16 switch using the SLIP scheduling algorithm.

0 10 20 30 40 50 60 70 80 90
0

10

20

30

40

50

60

64

Offered Load (%)

A
vg

 B
ur

st
 le

ng
th

 (
C

el
ls

)

Burst=16

Burst=32

Burst=64

CHAPTER 2 The SLIP Algorithm with a Single Iteration 32

5 Analysis of SLIP Performance

In general, it is difficult to analyze the performance of a SLIP switch, even for the simplest

traffic models. Under uniform load and either very low or very high offered load we can readily

approximate and understand the way in which SLIP operates. When arrivals are infrequent we can

assume that the arbiters act independently and that arriving cells are successfully scheduled with

very low delay. At the other extreme, when the switch becomes uniformly backlogged, we can see

that desycnhronization will lead the arbiters to find an efficient time division multiplexing scheme

and operate without contention. But when the traffic is non-uniform, or when the offered load is at

neither extreme, the interaction between the arbiters becomes difficult to describe. The problem

lies in the evolution and interdependence of the state of each arbiter and their dependence on arriv-

ing traffic.

5.1 Convergence to Time-Division Multiplexing Under Heavy Load

In Section 4.3 we argued that under heavy load, SLIP will behave similarly to an M/D/1 queue

with arrival rates and deterministic service time cell times. So, under a heavy load of Ber-

noulli arrivals the delay will be approximated by Equation 2.

To see how close SLIP becomes to time-division multiplexing under heavy load, Figure 2.10

compares the average latency for both SLIP and an M/D/1 queue (Equation 2). Above an offered

load of approximately 70%, SLIP behaves very similarly to the M/D/1 queue, but with a higher

latency. This is because the service policy is not constant: when a queue changes between empty

and non-empty, the scheduler must adapt to the new set of queues that require service. This adap-

tion takes place over many cell times while the arbiters desynchronize again. During this time, the

throughput will be worse than for the M/D/1 queue and the queue length will increase. This in turn

will lead to an increased latency.

5.2 Desynchronization of Arbiters

We have argued that the performance of SLIP is dictated by the degree of synchronization of

the output schedulers. In this section we present a simple model of synchronization for a stationary

and sustainable uniform arrival process.

λ
N
---- N

CHAPTER 2 The SLIP Algorithm with a Single Iteration 33

In Appendix 1 we find an approximation for , the expected number of synchronized

output schedulers at timet. The approximation is based on two assumptions:

1. Inputs that are unmatched at timet are uniformly distributed over all inputs.

2. The number of unmatched inputs at timet has zero variance.

This leads to the approximation

 (3)

FIGURE 2.10 Comparison of average latency for the SLIP algorithm and an M/D/1 queue. The switch is 16x16 and,
for the SLIP algorithm, arrivals are uniform i.i.d. Bernoulli arrivals.

20 30 40 50 60 70 80 90 99
0.1

1

10

100

1e+03

Offered Load (%)

A
vg

 C
el

l L
at

en
cy

 (
C

el
ls

)

SLIP

M/D/1

E S t()[]

E S t()[] N λN
λN 1–

λN
---------------- 

  λλN– λ2N
λN 1–

λN
---------------- 

  λ2N 1–
–≈

CHAPTER 2 The SLIP Algorithm with a Single Iteration 34

where,

This approximation is quite accurate over a wide range of uniform workloads. Figure 2.11

compares the approximation in Equation 3 with simulation results for both i.i.d. Bernoulli arrivals

and for an on-off arrival process modulated by a 2-state Markov-chain (described in Section 4.2).

N number of ports,=

λ arrival rate averaged over all inputs,=

λ 1 λ–() .=

0 10 20 30 40 50 60 70 80 90 100
0

1

2

3

4

5

6

7

8

9

10

11

Offered Load (%)

A
vg

 N
um

be
r

of
 S

yn
ch

ro
ni

ze
d

O
ut

pu
t S

ch
ed

ul
er

s

bernoulli_iid_uniform

train_64

Analytical

FIGURE 2.11 Comparison of analytical approximation and simulation results for the average number of synchronized
output schedulers. Simulation results are for a 16x16 switch with i.i.d Bernoulli arrivals and an on-off process
modulated by a 2-state Markov chain with an average burst length of 64 cells. The analytical approximation is shown in
Equation 3.

CHAPTER 2 The SLIP Algorithm with a Single Iteration 35

5.3 Stability of SLIP

Figure 2.2 shows that the SLIP algorithm is stable for all admissible uniform i.i.d. Bernoulli

traffic. In practice, however, traffic tends to be concentrated among a small number of ports that

have quite asymmetric transmit and receive behavior, making the traffic non-uniform. In this sec-

tion we consider the stability of SLIP under non-uniform traffic.

In Chapter 1 we saw that a 2x2 switch can be unstable for the maximum sized matching algo-

rithm for admissible i.i.d. Bernoulli arrivals,when the traffic pattern is non-uniform. SLIP oper-

ates efficiently by mimicking the behavior of the maximum matching algorithm under heavy load.

It is therefore not surprising that a 2x2 switch using the SLIP algorithm can also be unstable under

non-uniform traffic.

We illustrate the region of instability for SLIP using the 2x2 switch shown in Figure 2.12.

With i.i.d. Bernoulli arrivals, we find that the SLIP algorithm is not only unstable for certain

arrival rates, but also that its behavior is non-monotonic: increasing the arrival rate can actually

reduce the expected occupancy of the input queues.

Figure 2.13(a) illustrates this surprising effect: fixing and varying

 we see that SLIP becomes unstable in the region , but

becomes stable again for . It is also interesting to note that the behavior of

Q(1,2) and Q(2,1) is unaffected by Q(1,1), increasing monotonically even through the region of

instability for Q(1,1).

FIGURE 2.12 2x2 Switch with 3 active flows.

λ1 1,

λ1 2,

λ2 1,

µ1 1,

µ1 2,

µ2 1,

λ1 = λ1 1,() 0.48=

λ2 = λ1 2, = λ2 1,() 0.41 λ2 0.44≤ ≤

0.44 λ2 1 λ1–< <

CHAPTER 2 The SLIP Algorithm with a Single Iteration 36

In contrast,maxsize behaves quite differently: as shown in Figure 2.13(b) Q(1,1) becomes

unstable for all .

The region in which SLIP behaves non-monotonically is small. Figure 2.14 compares the

region of instability for both SLIP andmaxsize. Whereasmaxsizehas a stable region over most of

the region of admissible traffic bounded by , the region for SLIP is more complex.

Over most of the region of admissible traffic, increasingλ1 or λ2 cannot change SLIP from unsta-

ble to stable. However, this is not the case for , highlighted by the rectangle in

Figure 2.14.

Before trying to model this behavior, let us consider the intuition to be drawn from Figure

2.14. First, the region of instability is not symmetric in and : the switch is more susceptible

to instability for small when is large than vice-versa. This is also true formaxsize. Both

0.2 0.3 0.4 0.50.52
0.1

1

10

100

1e+03

Lambda_2

A
vg

 Q
ue

ue
 O

cc
up

an
cy

, E
[L

(i,
j)]

 (
C

el
ls

)
Q(1,1)

Q(1,2)

Q(2,1)

b) Maxsize algorithm.a) SLIP. Note that Q(1,1) becomes unstable

for , but is stable again as

traffic is increased.

0.41 λ≤ 2 0.44≤

FIGURE 2.13 Example of instability for SLIP and maximum sized matching algorithms for 2x2 switch. Traffic pattern
as shown in Figure 2.12, .λ1 0.48=

0.2 0.3 0.4 0.50.52
0.1

1

10

100

1e+03

Lambda_2

Q(1,1)

Q(1,2)

Q(2,1)

0.4 λ2 1 λ1–≤ ≤

λ1 λ2+ 0.88=

0.48 λ1 0.51≤ ≤

λ1 λ2

λ2 λ1

CHAPTER 2 The SLIP Algorithm with a Single Iteration 37

algorithms favor large sized matches (maxsize does this statically, whereas SLIP does so over sev-

eral cell times) and so will favor the “cross” traffic, which clears two cells simultaneously from

both inputs in a cell time, over the “parallel” traffic that clears a cell from only Q(1,1). The second

characteristic to be noted is that SLIP performs at its worst compared tomaxsize when

 and is close to 1. The reason for this is that the offered load is high, yet the

input queues Q(1,2) and Q(2,1) receive preferential service over Q(1,1). Frequently, either Q(1,2)

FIGURE 2.14 Region of instability for SLIP andmaxsize for a 2x2 switch under i.i.d Bernoulli arrivals and the traffic
pattern of Figure 2.12. In this example, , and

. For each algorithm, the shaded area representsunsustainable traffic patterns.

Lambda_1 λ= 1 1, Lambda_2 λ1 2, λ2 1,= =

Lambda_1+Lambda_2 1<

0 0.1 0.2 0.3 0.4 0.5 0.6
0.4

0.5

0.6

0.7

0.8

Lambda_2

La
m

bd
a_

1

SLIP

MAXIMUM

0.2 λ< 1 0.4< λ1 λ2+

CHAPTER 2 The SLIP Algorithm with a Single Iteration 38

or Q(2,1) will change between empty and non-empty, requiring SLIP to adapt to the new traffic

pattern. This inhibits the tendency of the arbiters to desynchronize.

5.3.1 Drift Analysis of a 2x2 SLIP Switch: First Approximation

To try and understand the non-monotonic behavior of SLIP, we examine the more tractable,

simplified switch with only one queue Q(1,1) shown in Figure 2.15. This switch behaves similarly

to the 2x2 switch with 3 queues in Figure 2.12, except that cells arriving at input 1 and destined for

output 2 are not queued. A cell arrives at the beginning of the time slot with probabilityε; if the

cell is not scheduled to be transmitted in the same cell time, it is discarded. Similarly for cells

arriving at input 2 destined for output 1.

In Appendix 2 Section 1 we analyze this switch to determine values ofλ and ε for which the

switch is unstable. By considering the expected increase in L, the occupancy of Q(1,1), at each cell

time, we find that the switch is unstable for

. (4)

This result is confirmed in Appendix 2 Section 2 where the distribution function for the occu-

pancy of Q(1,1) is found using the matrix geometric method of Neuts [36].

Equation 4 is plotted in Figure 2.16 along with the admissibility constraint . The area

between the curves is the region for which . Comparing Figure 2.16 with the

region of stability for the full 2x2 switch in Figure 2.14, we see that they are quite different.

λ
ε

ε

FIGURE 2.15 Simplified 2x2 switch with a single queue, Q(1,1).

L

λ 1

1 2ε ε2 2ε3–+ +
--->

λ ε 1<+

E L t()[] ∞→

CHAPTER 2 The SLIP Algorithm with a Single Iteration 39

Although the model captures the asymmetry between and , and the fact that the switch per-

forms worst when is small and , it doesnot capture the non-monotonic behavior of

SLIP. In fact, we should expect the behavior to be different: cells that arrive at one of the unbuf-

fered inputs of our simplified switch can only affect the switch for a single cell time. Cells arriving

at the full 2x2 switch of Figure 2.12 that are unscheduled when they first arrive will still be there in

the next cell time, reducing the likelihood that Q(1,1) will be serviced.

We can substantially improve the accuracy of our model by estimating the number of cell

times that an arriving cell will affect the scheduling algorithm and increase the arrival rate,ε to

compensate.

Our claim is that the arrival rate in the approximate model should bedoubled,i.e. .

Our argument in support of this is a heuristic one: when a cell arrives at an empty queue in the

exact model, it is either successfully scheduled immediately or it is queued. If it is queued, the

FIGURE 2.16 The area between the two curves is the region of instability for the switch in Figure 2.15.

0 0.1 0.2 0.3 0.4 0.5 0.6
0.4

0.5

0.6

0.7

0.8

Epsilon

La
m

bd
a

λ ε

λ λ ε 1≈+

ε 2λ2=

CHAPTER 2 The SLIP Algorithm with a Single Iteration 40

SLIP scheduler must service this queue in the next cell time. Hence, the cell has affected the

scheduler for two cell times.

With the approximation , we obtain a more accurate model. Figure 2.17 shows the

region of instability with this approximation, modeled in the same way as before. Comparing this

with the region of instability in Figure 2.14 obtained using simulation, we see that the characteris-

λ2
1
2
---ε≈

FIGURE 2.17 Region of instability for simplified 2x2 switch model, using the approximation , .λ2
1
2
---ε≈ λ1 λ≈

0 0.1 0.2 0.3 0.4 0.5 0.6
0.4

0.5

0.6

0.7

0.8

Lambda_2

La
m

bd
a_

1

CHAPTER 2 The SLIP Algorithm with a Single Iteration 41

tics are very similar. The approximate model captures the non-monotonic behavior of SLIP close

to .

5.3.2 Drift Analysis of a 2x2 SLIP Switch: Second Approximation

In our first model we found that modeling the arrival process as unqueued i.i.d. Bernoulli

arrivals was inaccurate. This was because arriving cells in the real switch are queued and affect the

scheduler for multiple cell times. In this section we try and improve upon this approximation by

modeling the arrival process more accurately.

In our second approximation, we model arrivals as an on-off process, modulated by a 2-state

discrete-time Markov chain (DTMC). The DTMC is used to model thebusy andidle cycles of

input queues Q(1,2) and Q(2,1) in the real switch. When the DTMC is in thebusy state, cells are

arrive at rate 1, and when it is theidle state, cells arrive at rate 0. Using this model we attempt to

capture the correlation between successive cell times.

In Appendix 2 Section 1.2, we analyze such a switch to determine values ofλ1 and λ2 for

which the switch is unstable. As before, by considering the expected increase in L, the occupancy

of Q(1,1), at each cell time, we find an expression for the stable region of the switch. Unfortu-

nately the stability expression is the ratio of two 10th degree polynomials inλ1 and λ2 and we

have been unable to find a closed form expression for this region in the desired form .

Instead, we find the stable region numerically, as shown in Figure 2.18 along with admissibil-

ity constraint . The approximate model captures the non-monotonic behavior of SLIP

well. But although theshape of the stability region is accurate, its values are not. The exact posi-

tion of the region is very sensitive to the expressions for the busy and idle cycles. Several of the

poles of the 10th degree polynomials are close to the admissible region: moving these only slightly

has a large affect on the position and rotation of the stability region.

5.4 Approximate Delay Model for 2x2 SLIP Switch

As described in Section 5.3.1, we can model thesimplified switch in Figure 2.15 for i.i.d. Ber-

noulli arrivals as an infinite dimension DTMC. This can be solved using the matrix-geometric

λ1 0.5=

λ1 f λ2()>

λ1 λ2 1<+

CHAPTER 2 The SLIP Algorithm with a Single Iteration 42

method of Neuts [36], and its solution is described in Appendix 2 Section 2. From the steady-state

distribution, (Appendix 2, Equation 20) we can evaluate the expected

occupancy of Q(1,1).

To determine how good our simplified model is, Figure 2.19 compares the expected delay of

thesimplified switch model to the simulated average delay of theactual switch with three queues

in Figure 2.12. We make the assumption introduced in Section 5.3.1 that . Graphs are

FIGURE 2.18 Region of stability for the approximate model of the switch in Figure 2.12 as a function ofλ1 andλ2.
The admissibility constraintλ1 + λ2 < 1 is shown. The stable region lies between the two curves and below the
admissibility constraint.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0.4

0.5

0.6

0.7

0.8

0.9

1

Lambda_2

La
m

bd
a_

1

Π Π0 Π1 Π2 …, , ,[]=

ε 2λ2=

CHAPTER 2 The SLIP Algorithm with a Single Iteration 43

FIGURE 2.19 Average delay as a function of offered load for 2x2 switch with SLIP scheduling algorithm.
Comparison of solution of simplified model with simulated results for exact model.

0.2 0.3 0.4 0.5 0.6 0.7
0.1

1

10

100

1e+03

Lambda_2

A
vg

 Q
ue

ue
 O

cc
up

an
cy

 (
C

el
ls

)
Simulated

Analytical

0.2 0.3 0.4 0.50.52
0.1

1

10

100

1e+03

Lambda_2

Simulated

Analytical

0.1 0.20.02 0.22
0.1

1

10

100

1e+03

Lambda_2

A
vg

 Q
ue

ue
 O

cc
up

an
cy

 (
C

el
ls

)

Simulated

Analytical

(a)λ1 = 0.30 (b) λ1 = 0.48

(c) λ1 = 0.78

CHAPTER 2 The SLIP Algorithm with a Single Iteration 44

shown for representing respectively regions in which Q(1,1) is always

stable, non-monotonic and unstable.

As we found with the analytical solution for the stability region, the model of thesimplified

switch exhibits the same behavior as the actual switch, but the values for delay are quite different.

6 Variations on SLIP

6.1 Prioritized SLIP

Many applications use multiple classes of traffic with different priority levels. The basic SLIP

algorithm can be extended to include requests at multiple priority levels with only a small perfor-

mance and complexity penalty. We call this the Prioritized SLIP algorithm.

In Prioritized SLIP each input now maintains a separate FIFOfor each priority level and for

each output. This means that for an NxN switch with P priority levels, each input maintains PxN

FIFOs. We shall label the queue between inputi and outputj at priority levell, where

, . As before, only one cell can arrive in a cell time, so this does not require a

processing speedup by the input.

The Prioritized SLIP algorithm givesstrict priority to the highest priority request in each cell

time. This means that will only be served if all queues are empty.

The SLIP algorithm is modified as follows:

Step 1. Request. Input i selects the highest priority non-empty queue for outputj. The
input sends the priority levellij of this queue to the outputj.

Step 2. Grant. If outputj receives any requests, it determines the highest level request. i.e.
it finds . The output then chooses one input among only those inputs
that have requested at level . The output arbiter maintains a separate pointer, for
each priority level. When choosing among inputs at levelL(j), the arbiter uses the pointer

and chooses using the same round-robin scheme as before. The output notifies
each input whether or not its request was granted. The pointer is incremented
(modulo N) to one location beyond the granted input if and only if inputi accepts outputj
in step 3.

λ1 0.3 0.4 and 0.78,=

Ql i j,()

1 i j, N≤ ≤ 1 l P≤ ≤

Ql i j,() Qm i j,() l m P≤<,

L j() max
i

l ij()=
L j() gjl

gjL j()
gjL j()

CHAPTER 2 The SLIP Algorithm with a Single Iteration 45

Step 3. Accept. If input i receives any grants, it determines the highest level grant. i.e. it
finds . The input then chooses one output among only those that have
requested at level . The input arbiter maintains a separate pointer, for
each priority level. When choosing among outputs at level , the arbiter uses the
pointer and chooses using the same round-robin scheme as before. The input noti-
fies each output whether or not its grant was accepted. The pointer is incremented
(modulo N) to one location beyond the accepted output.

Implementation of the Prioritized SLIP algorithm is more complex than the basic SLIP algo-

rithm, but can still be fabricated from the same number of arbiters. This is because each arbiter

only selects an input (output) among those requesting (granting) at the highest priority level. The

arbiter now consists of two parts: the first part determines the levell of the highest priority request

(grant) and removes those requests (grants) with levelsm<l; the second part of the arbiter is the

same round-robin arbiter as before. An implementation of Prioritized SLIP is described in Section

7.

6.2 Threshold SLIP

As we shall see in Chapter 4, scheduling algorithms that find a maximumweightmatch out-

perform those that find a maximumsized match. In particular, if the weight of the edge between

input i and outputj is the occupancyLi,j(t) of input queueQ(i,j) then we will conjecture that the

algorithm is stable for all admissible i.i.d. Bernoulli arrival patterns. But maximum weight

matches are significantly harder to calculate than maximum sized matches [41] and to be practical,

must be implemented using an upper limit on the number of bits used to represent the occupancy

of the input queue.

In the Threshold SLIP algorithm we make a compromise between the maximum sized match

and the maximum weight match by quantizing the queue occupancy according to a set of threshold

levels. The threshold level is then used to determine the priority level in the Priority SLIP algo-

rithm. Each input queue maintains an ordered set of threshold levels , where

. If then the input makes a request of level .

L' i() max
j

l ij()=
l ij L' i()= ail

L' i()
aiL' i()

aiL' i()

T t1 t2 … tT, , ,{ }=

t1 t2 … tT< < < ta Q i j,()≤ ta 1+< l i a=

CHAPTER 2 The SLIP Algorithm with a Single Iteration 46

6.3 Weighted SLIP

In some applications, the strict priority scheme of Prioritized SLIP may be undesirable, lead-

ing to starvation of low-priority traffic. The Weighted SLIP algorithm can be used to divide the

throughput to an output non-uniformly among competing inputs. The bandwidth from inputi to

outputj is now a ratio subject to the admissibility constraints .

In the basic SLIP algorithm each arbiter maintains an ordered circular list, .

In the Weighted SLIP algorithm the list is expanded at outputj to be the ordered circular list

where and inputi appears times

in .

6.4 Least Recently Used

When an output arbiter in SLIP successfully selects an input, that input becomes thelowest

priority in the next cell time. This is intuitively a good characteristic: the algorithm should least

favor connections that have been served recently. But which input should now have thehighest

priority? In SLIP, it is the next input that happens to be in the schedule. But this is not necessarily

the input that was servedleast recently. By contrast, the Least Recently Used (LRU) algorithm

gives highest priority to the least recently used and lowest priority to the most recently used.

LRU is identical to SLIP except for the ordering of the elements in the arbiter list: they are no

longer in ascending order of input number but rather are in an ordered list starting from the least

recently to most recently selected. If a grant is successful, the input that is selected is moved to the

end of the ordered list. Similarly, an LRU list can be kept at the inputs for choosing among com-

peting grants.

We might expect LRU to perform as well as, if not better than SLIP. But as we can see from

Figure 2.20, it performs significantly worse when the offered load is greater than 65%. This is

because the output arbiters do not tend todesynchronizeand several may grant to the same input,

as shown in Figure 2.21. Each schedule can become re-ordered at the end of each cell time which,

over many cell times, leads to a random ordering of the schedules. This in turn leads to a high

probability that the pointers at two or more outputs will point to the same input: the same problem

fij
nij

dij
------= fij

i
∑ 1< fij

j
∑ 1<,

S 1 … N, ,{ }=

Sj 1 … Wj, ,{ }= Wj LowestCommonMultipledij()=
nij

dij
------ Wj×

Sj

CHAPTER 2 The SLIP Algorithm with a Single Iteration 47

encountered by RRM and PIM with a single iteration. This explains why the performance for PIM

and LRU are very similar.

FIGURE 2.20 LRU performs no better than PIM for a single iteration. Results shown for 16x16 switch with i.i.d.
Bernoulli arrivals.

20 30 40 50 60 70 80 90 100
0.1

1

10

100

1e+03

Offered Load (%)

A
vg

 C
el

l L
at

en
cy

 (
C

el
ls

)
LRU

SLIP

PIM

FIFO

CHAPTER 2 The SLIP Algorithm with a Single Iteration 48

FIGURE 2.21 LRU performs poorly because of the synchronization between the output arbiters. Results shown for
16x16 switch with i.i.d. Bernoulli arrivals.

0 10 20 30 40 50 60 70 80 90 100
0

1

2

3

4

5

6

7

8

9

10

11

Offered Load (%)

A
vg

 N
um

be
r

of
 S

yn
ch

ro
ni

ze
d

O
ut

pu
t S

ch
ed

ul
er

s

LRU

RRM

SLIP

CHAPTER 2 The SLIP Algorithm with a Single Iteration 49

7 Implementing SLIP

One of the objectives of this work was to design a scheduler that is simple to implement. To

conclude our description of SLIP, in this section we consider the complexity of implementing

SLIP in hardware, arguing that with current technology it is feasible to implement a centralized

scheduler for a 32x32 switch on a single chip.

As illustrated in Figure 2.22, each SLIP arbiter consists of a priority encoder with a program-

mable highest priority, a register to hold the highest priority value, and an incrementer to move the

pointer after it has been updated. The decoder is necessary to provide a decision line for each bit in

the request vector.

Figure 2.23 shows how 2N arbiters and an N2-bit memory are interconnected to construct a

SLIP scheduler for an NxN switch. The state memory records whether an input queue is empty or

non-empty. From this memory, an N2-bit wide vector presents N bits to each of Ngrant arbiters.

The grant arbiters select a single input among the contending requests. The grant decision from

each grant arbiter is then passed to the Naccept arbiters. Each arbiter selects at most one output on

1
2
3
4
5

N
Request
Vector

+

gi

log(N)

0
1
1
0
1

1

Priority
Encoder

FIGURE 2.22 Round-robingrant arbiter for SLIP and RRM algorithms. The priority encoder has a programmed
highest-priority,gi. Theaccept arbiter at the input is identical.

1
2
3
4
5

N

Decoder

CHAPTER 2 The SLIP Algorithm with a Single Iteration 50

behalf of an input. The final decision is then saved in a decision register and the values of thegi

andai pointers are updated. The decision register is used to notify each input which cell to transmit

and to configure the crossbar switch.

The area required to implement the scheduler in silicon is dominated by the priority encoders.

An estimate of the number of 2-input gates required to implement the programmable priority using

a PAL structure is shown in Table 2.11. This table shows that the number of gates per arbiter grows

approximately with N3 and hence with N4 for the full scheduler. In some implementations, it may

Switch Size (N)
Number of 2-input
gates per arbiter

Total number of
2-input gates for N

arbiters

4 44 176

8 280 2,240

16 1,637 29,192

32 13,169 421,408

Table 2.1 Estimate of number of 2-input gates required to implement 1 and N arbiters for
a SLIP scheduler.

Grant
Arbiters

Accept
Arbiters

S
ta

te
 o

f I
np

ut
 Q

ue
ue

s
(N

2
bi

ts
)

Decision

FIGURE 2.23 Interconnection of 2N arbiters to implement SLIP for an NxN switch.

1

2

N

1

2

N

Register

CHAPTER 2 The SLIP Algorithm with a Single Iteration 51

be desirable to reduce the number of arbiters, sharing them among both the grant and accept steps

of the algorithm. Such an implementation requiring only N arbiters1 is shown in Figure 2.24.

When the results from the grant arbiter have settled, they are registered and fed back to the input

for the second step. Obviously each arbiter must maintain a separate register for thegi andai

pointers, selecting the correct pointer for each step.

Assuming that the design is dominated by the arbiters, Table 2.1 indicates that fewer than

500,000 gates are required for a 32x32 switch. This is easily feasible in current gate-array technol-

ogy.

7.1 Prioritized SLIP

The Prioritized SLIP algorithm was described in Section 6.1 and is also the basis of the

Threshold SLIP algorithm in Section 6.2.

1. These values were obtained usingespresso andmisII from the Berkeley Octtools VLSI design package. No attempt
was made to manually optimize the design.

1. A slight performance penalty is introduced by registering the output of the grant step and feeding back the result as
the input to the accept step. This is likely to be small in practice.

Arbiters Decision

S
ta

te
 o

f I
np

ut
 Q

ue
ue

s
(N

2
bi

ts
)

N2

N2

Step

2

1

FIGURE 2.24 Interconnection of N arbiters to implement SLIP for an NxN switch. Each arbiter is used for both input
and output arbitration. In this case, each arbiter containstwo registers to hold pointersgi andai.

1

2

N

CHAPTER 2 The SLIP Algorithm with a Single Iteration 52

For a small number of priority levels (e.g. 2 or 3), agrant arbiter for Prioritized SLIP can be

implemented using a separate request vector for each priority level. The arbiter selects the highest

priority, non-zero request vector and from that vector selects a single input as before. The arbiter

makes its decision using a single priority encoder, but must maintain a separate pointer for each

priority level. When the grant arbiter has made its selection, the result and priority level is fed to

eachaccept arbiter, which operate in an identical manner to the grant arbiters.

If the number of priority levels is large, it is more efficient for an input (output) to supply the

grant (accept) arbiter with just the highest priority request (grant). An example of an arbiter for

Prioritized SLIP is shown in Figure 2.25. The arbiter selects the highest priority request and con-

siders only those requests at this level. Although the arbiter does not require any additional priority

encoders, for P priority levels it requires P pointer registers, a combinatorial circuit with N inputs,

each logP bits wide to determine the maximum requested priority level and N 2-input compara-

tors, each logP bits wide.

1
2
3
4
5

N
Prioritized

Vector

+

log(N)

0
7
3
0
9

4

Priority
Encoder

1
2
3
4
5

N

DecoderRequest

gj1=
=
=
=
=

=

logP
logP
logP
logP
logP

logP

Max

Priority
Select

FIGURE 2.25 Grant arbiter for Prioritized SLIP with P priority levels. The “Priority Select” block selects only those
requests at the highest requested priority level, L(j). The priority encoder uses pointergjL(j).The decoder determines
which input to send L(j) to.

53

CHAPTER 3

The SLIP Algorithm

with Multiple Iterations

1 Introduction

In this chapter we consider the SLIP algorithm with multiple iterations per cell time. We shall

call the generic algorithm “iterative SLIP” (i-SLIP). When the number of iterationsn is known, we

shall call the algorithmn-SLIP. For example, Chapter 2 focussed on 1-SLIP.

With more than one iteration, the iterative SLIP algorithm improves upon the performance of

1-SLIP: each iteration attempts to add connections not made by earlier iterations.

We begin this section with a description ofi-SLIP, emphasizing the differences from non-iter-

ative SLIP. In particular, we pay careful attention to the way that the arbiter pointers are updated.

In Section 3 we present some results from a simulation study ofi-SLIP. As we found for 1-SLIP,

iterative SLIP is stable for all admissible uniform i.i.d. Bernoulli arrivals. We find that the perfor-

mance improves as we increase the number of iterations up to aboutlog2N, for an NxN switch.

Once again, we shall see thatdesynchronization of the output arbiters with respect to each other

plays an important rôle in achieving low latency. However, we will also see that the basici-SLIP

algorithm tends to do a worse job of desynchronizing the arbiters as the number of iterations

increase.

CHAPTER 3 The SLIP Algorithm with Multiple Iterations 54

In Section 4 we try to improve upon the basic iterative SLIP algorithm by changing the rules

for updating the pointers so that desynchronization is improved when the number of iterations is

increased. We consider the extra complexity that these changes introduce.

Finally, in Section 5 we describe an implementation of iterative SLIP, showing that although it

may take longer to execute, the implementation is only slightly more complex than the implemen-

tation of non-iterative SLIP.

2 The Iterative SLIP Matching Algorithm

2.1 Description

Thei-SLIP algorithm is an enhancement of the SLIP algorithm described in Chapter 2, but has

a number of differences specific to its iterative behavior. As before, at the beginning of each cell

time, the match process begins over. All inputs and outputs are initially unmatched and only those

inputs and outputs not matched at the end of one iteration are eligible for matching in the next.

Connections made in one iteration are never removed by a later iteration, even if a larger sized

match would result. The three steps of each iteration operate in parallel on each output and input

and are as follows:

Step 1. Request. Each unmatched input sends a request to every output for which it has a
queued cell.

Step 2. Grant. If an unmatched output receives any requests, it chooses the one that
appears next in a fixed, round-robin schedule starting from the highest priority element.
The output notifies each input whether or not its request was granted. The pointer to
the highest priority element of the round-robin schedule is incremented (modulo N) to
one location beyond the granted input if and only if the grant is accepted in Step 3 of the
first iteration.

Step 3. Accept. If an unmatched input receives a grant, it accepts the one that appears next
in a fixed, round-robin schedule starting from the highest priority element. The pointer
to the highest priority element of the round-robin schedule is incremented (modulo N) to
one location beyond the accepted outputonly if this input was matched in the first itera-
tion.

gi

ai

CHAPTER 3 The SLIP Algorithm with Multiple Iterations 55

2.2 Updating Pointers

Note that pointersgi andai are only updated for matches found in the first iteration. Connec-

tions made in subsequent iterations do not cause the pointers to be updated. This is to avoid starva-

tion. To understand how starvation can occur, we refer to the example of a 3x3 switch with 5 active

and heavily loaded connections, shown in Figure 3.1. The switch is scheduled with the2-SLIP

algorithm, except in this case the pointers are updated after both iterations. The figure shows the

sequence of decisions by the grant and accept arbiters; for this traffic pattern, they form a repetitive

FIGURE 3.1 Example of starvation, if pointers are updated after every iteration. The 3x3 switch is heavily loaded, i.e.
all active connections have an offered load of 1 cell per cell time. The sequence of grants and accepts repeats after 2 cell
times, even though the (highlighted) connection from input 1 to output 2 has not been made. Hence, this connection will
be starved indefinitely.

1

2

3

1

2

3

Cell 1, Iteration 1:

g1

g2

g3

1

1

1

=

a1

a2

a3

1

1

1

=,

i1
i2
i3

R
j1 j2 j3
- j2 -

- j2 -

j1
j2
j3

G
i1
i1
i1

i1
i2
i3

A
j1
-

-

→ →

Cell 1, Iteration 2:

j1
j2
j3

G
i1
i2
-

i1
i2
i3

A
j1
j2
-

→

Cell 2, Iteration 1:

g1

g2

g3

2

3

1

=

a1

a2

a3

2

3

1

=,

i1
i2
i3

R
j1 j2 j3
- j2 -

- j2 -

j1
j2
j3

G
i1
i3
i1

i1
i2
i3

A
j3
-

j2

→ →

Cell 2, Iteration 2:

j1
j2
j3

G
-

i3
i1

i1
i2
i3

A
j3
-

j2

→

CHAPTER 3 The SLIP Algorithm with Multiple Iterations 56

cycle in whichthe highlighted connection from input 1 to output 2 is never served. Each time the

round-robin arbiter at output 2 grants to input 1, input 1 chooses to accept output 1 instead.

Starvation is eliminated if the pointers are not updated after the first iteration. In the example,

output 2 would continue to grant to input 1 with highest priority until it is successful.

2.3 Properties

The i-SLIP algorithm has the following properties:

Property 1. Connections matched in the first iteration become the lowest priority in the
next cell time. This is the same as Property 1 of 1-SLIP described in Chapter 2 Section 3.

Property 2. No connection is starved. As with 1-SLIP, and because of the requirement
that pointers are not updated after the first iteration, an output will continue to grant to the
highest priority requesting input until it is successful.

Property 3. For i-SLIP with 1 iteration, and under heavy load, queues with a common
output all have the same throughput. This is the same as in Chapter 2 Section 3.

Property 4. For i-SLIP with more than one iteration, and under heavy load, queues with a
common output may each have a different throughput. An example of this property is
shown in Figure 3.2 for a heavily loaded 3x3 switch scheduled using 2-SLIP. The state of
the grant and accept arbiters forms a cycle that repeats every three cell times. Note that
although all non-empty queues are served, Q(2,3) is servedtwice per cycle whereas
Q(1,3) is served onlyonce.

Property 5. The algorithm will converge in at most N iterations. Each iteration will
schedule zero, one or more connections. If zero connections are scheduled in an iteration
then the algorithm has converged: no more connections can be added with more itera-
tions. Therefore, the slowest convergence will occur if exactly one connection is sched-
uled in each iteration. At most N connections can be scheduled (one to every input and
one to every output) which means the algorithm will converge in at most N iterations.

Property 6. The algorithm will not necessarily converge to a maximum sized match. At
best, it will find amaximal match: the largest size match without removing connections
made in earlier iterations.

CHAPTER 3 The SLIP Algorithm with Multiple Iterations 57

3 Simulated Performance of Iterative SLIP

3.1 How Many Iterations?

Now that we have an iterative algorithm, we need to decide how many iterations to perform

1

2

3

1

2

3

Cell 1, Iteration 1:

g1

g2

g3

X

X

3

=

a1

a2

a3

2

X

X

=,

i1
i2
i3

R
j1 j2 j3
- j3 -

- - -

j1
j2
j3

G
i1
i1
i1

i1
i2
i3

A
j2
-

-

→ →

Cell 1, Iteration 2:

j1
j2
j3

G
-

i1
i2

i1
i2
i3

A
j2
j3
-

→

Cell 2, Iteration 1:

g1

g2

g3

X

X

3

=

a1

a2

a3

3

X

X

=,

i1
i2
i3

R
j1 j2 j3
- j3 -

- - -

j1
j2
j3

G
i1
i1
i1

i1
i2
i3

A
j3
-

-

→ →

Cell 2, Iteration 2: No new connections

Cell 3, Iteration 1:

g1

g2

g3

X

X

2

=

a1

a2

a3

1

X

X

=,

i1
i2
i3

R
j1 j2 j3
- j3 -

- - -

j1
j2
j3

G
i1
i1
i2

i1
i2
i3

A
j1
j3
-

→ →

Cell 3, Iteration 2: No new connections

FIGURE 3.2 Example of unequal service under heavy load for 2 inputs that share an output.The 3x3 switch is heavily
loaded, i.e. all four active connections have an offered load of 1 cell per cell time. The sequence of grants and accepts
for 2-SLIP repeats after 3 cell times. During each cycle, Q(2,3) is served twice whereas Q(1,3) is served only once.
Note that for 1-SLIP, only the 1st cell time would be different and Q(2,3) would be served only once per cycle.

CHAPTER 3 The SLIP Algorithm with Multiple Iterations 58

during each cell time. Ideally, from Property 5 above we would like to perform N iterations. How-

ever, in practice there may be insufficient time for N iterations, and so we need to consider the pen-

alty of performing onlyi iterations, where . In fact, because of the desynchronization of the

arbiters,i-SLIP will usually converge in fewer than N iterations. An interesting example of this is

shown in Figure 3.3. In the first cell time, the algorithm takes N iterations to converge, but thereaf-

ter converges in one less iteration each cell time. After N cell times, the arbiters have become

totally desynchronized and the algorithm will converge in a single iteration.

How many iterations should we use: it clearly doesn’t always take N? One option is to always

run the algorithm to completion, resulting in a scheduling time that varies from cell to cell. In

some applications this may be acceptable. In others, such as in an ATM switch, it is desirable to

maintain a fixed scheduling time and to try and fit as many iterations into that time as possible.

Under simulation, we have found that for anNxN switch it takesabout log2N iterations fori-

SLIP to converge. This is similar to the results obtained for PIM in [3], in which the authors prove

that

, (1)

whereI is the number of iterations that PIM takes to converge. However, although for all the

stationary arrival processes we have considered fori-SLIP, we have not been able to

prove that this relation holds in general.

As an example, Figure 3.4 compares the number of iterations required for PIM and i-SLIP to

converge under uniform i.i.d. Bernoulli arrivals.

3.2 Bernoulli Traffic

To illustrate the improvement in performance ofi-SLIP when the number of iterations is

increased, Figure 3.5 shows the average queueing delay for 1, 2 and 4 iterations under uniform

i.i.d. Bernoulli arrivals. We find that multiple iterations ofi-SLIP significantly increase the size of

the match and therefore reduce the queueing delay1. In fact,n-SLIP is stable for alln under admis-

1. Although not shown, we find that increasingi above 4 for a 16x16 switch leads to a negligible performance improve-
ment.

i N<

E I() log2N
4
3
---+≤

E I() log2N<

CHAPTER 3 The SLIP Algorithm with Multiple Iterations 59

g1

g2

:

gN

1

1

:

1

=

a1

a2

:

aN

1

1

:

1

=,

i1
i2
:

iN

R

j1 j2 … jN
j1 j2 … jN
: : … :

j1 j2 … jN

j1
j2
:

jN

G

i1
i1
:

i1

i1 A j1→ →

j1
j2
:

jN

G

i1
i2
:

iN

i1
i2
:

iN

A

j1
j2
:

jN

→

g1

g2

:

gN

2

1

:

1

=

a1

a2

:

aN

2

1

:

1

=,

i1
i2
:

iN

R

j1 j2 … jN
j1 j2 … jN
: : … :

j1 j2 … jN

j1
j2
:

jN

G

i1
i1
:

i1

i1
i2

A j2
j1

→ →

j1
j2
:

jN

G

i1
i2
:

iN

i1
i2

i3
:

iN

A

j2
j1

j3
:

jN

→

:

:

g1

g2

:

gN

N

N 1–

:

1

=

a1

a2

:

aN

N

N 1–

:

1

=,

i1
i2
:

iN

R

j1 j2 … jN
j1 j2 … jN
: : … :

j1 j2 … jN

j1
j2
:

jN

G

iN
iN 1–

:

i1

i1
i2
:

iN

A

jN
jN 1–

:

j1

→ →

Cell N, Iteration 1:

Cell 2, Iteration 1:

Cell 1, Iteration 1:

Iteration N:

Iteration N-1:

FIGURE 3.3 Example of the number of iterations required to converge for a heavily loaded NxN switch. All input
queues remain non-empty for the duration of the example. In the first cell time, the arbiters are all synchronized. During
each cell time, one more arbiter is desynchronized from the others. After N cell times, all arbiters are desynchronized
and a maximum sized match is found in a single iteration.

CHAPTER 3 The SLIP Algorithm with Multiple Iterations 60

sible uniform i.i.d. Bernoulli arrivals. This should come as no surprise: in Chapter 2 we saw that 1-

SLIP is stable under these conditions. Intuitively, the size of the match increases with the number

of iterations: each new iteration potentially adds connections not made by earlier iterations. As a

result, for a given set of queue occupancies(n+1)-SLIP can provide an instantaneous match closer

to the maximum sized match thann-SLIP. This is illustrated in Figure 3.6 which compares the size

of eachi-SLIP matching with the size of the maximum matching for the same instantaneous queue

occupancies. Under low offered load, the 1-SLIP arbiters move randomly and the ratio of the

FIGURE 3.4 An example of the number of iterations fori-SLIP and PIM to converge for uniform i.i.d. Bernoulli traffic
as a function of the offered load for a 16x16 switch. Each algorithm is run to completion during each cell time to
determine how many iterations are required before no more connections can be added.

0 10 20 30 40 50 60 70 80 90 100
0

1

2

3

4

Offered Load (%)

A
vg

 N
um

be
r

of
 It

er
at

io
ns

 T
o

C
on

ve
rg

e
(C

el
ls

)

PIM

SLIP

CHAPTER 3 The SLIP Algorithm with Multiple Iterations 61

match size to the maximum match size decreases with increased offered load. But when the load

exceeds approximately 65%, the ratio begins to increase linearly. This is the result of desynchroni-

zation of the output arbiters which leads to a better and better match as the load increases. 2-SLIP

and 4-SLIP behave similarly and, as expected, the ratio increases with the number of iterations

indicating that the matching gets closer to the maximum sized match. But only up to a point: for an

16x16 switch under this traffic load, increasing the number of iterations beyond four does not mea-

surably increase the average match size.

20 30 40 50 60 70 80 90 100
0.1

1

10

100

1e+03

Offered Load (%)

A
vg

 C
el

l L
at

en
cy

 (
C

el
ls

)

FIFO

1−SLIP

2−SLIP

4−SLIP

Output

FIGURE 3.5 Performance ofi-SLIP for 1,2 and 4 iterations compared with FIFO and output queueing for i.i.d
Bernoulli arrivals with destinations uniformly distributed over all outputs. Results obtained using simulation for a 16x16
switch. The graph shows the average delay per cell, measured in cell times, between arriving at the input buffers and
departing from the switch.

CHAPTER 3 The SLIP Algorithm with Multiple Iterations 62

Although the average queueing delay is reduced by increasing the number of iterations, the

synchronization of the output arbitersincreases, as shown in Figure 3.7. This unfortunate behavior

is the consequence of only allowing the arbiters to be updated after the first iteration. With 1-SLIP,

every successful connection moves an arbiter’s pointer, leading to a rapid desynchronization under

high offered load. For 2-SLIP and 4-SLIP, only those connections made by the first iteration move

the arbiter’s pointer, leading to a slower rate of desynchronization. Later in this chapter we will

consider ways thati-SLIP can be modified to reduce the arbiter synchronization.

FIGURE 3.6 Comparison of the match size fori-SLIP with the size of a maximum sized match for the same set of
requests. Results are for a 16x16 switch and uniform i.i.d. Bernoulli arrivals.

20 30 40 50 60 70 80 90 100

0.7

0.8

0.9

1

0.6

Offered Load (%)

P
er

ce
nt

ag
e

of
 M

ax
im

um
 S

iz
ed

 M
at

ch

1−SLIP

2−SLIP

4−SLIP

CHAPTER 3 The SLIP Algorithm with Multiple Iterations 63

3.3 Bursty Traffic

As we did for 1-SLIP, we illustrate the effect of burstiness oni-SLIP using an on-off arrival

process modulated by a 2-state Markov-chain. The source alternately produces a burst of full cells

(all with the same destination) followed by an idle period of empty cells. The bursts and idle peri-

ods contain a geometrically distributed number of cells.

Figure 3.8 shows the performance ofi-SLIP under this arrival process for a 16x16 switch,

comparing the performance for 1, 2 and 4 iterations. As we would expect, the increased burst size

0 10 20 30 40 50 60 70 80 90 100
0

1

2

3

4

5

6

7

8

9

10

11

Offered Load (%)

A
vg

 N
um

be
r

of
 S

yn
ch

ro
ni

ze
d

O
ut

pu
t S

ch
ed

ul
er

s

1−SLIP

2−SLIP

4−SLIP

FIGURE 3.7 Average number of synchronized output schedulers as a function of offered load for uniform i.i.d.
Bernoulli arrivals. Scheduling is with 1-SLIP, 2-SLIP and 4-SLIP.

CHAPTER 3 The SLIP Algorithm with Multiple Iterations 64

leads to a higher queueing delay whereas an increased number of iterations leads to a lower queue-

ing delay. In all three cases, the average latency isproportional to the expected burst length. As

pointed out in Chapter 2, the performance for bursty traffic is not heavily influenced by the queue-

ing policy.

40 50 60 70 80 90 100
10

100

1e+03

1e+04

Offered Load (%)

A
vg

 L
at

en
cy

 p
er

 C
el

l (
C

el
ls

)

1−SLIP

2−SLIP

4−SLIP

FIGURE 3.8 Performance ofi-SLIP for 1, 2 and 4 iterations under bursty arrivals. Arrival process is a 2-state Markov-
modulated on-off process. Average burst lengths are 16, 32 and 64 cells.

CHAPTER 3 The SLIP Algorithm with Multiple Iterations 65

3.4 As a Function of Switch Size

In Chapter 2 we found that 1-SLIP performance degrades as the switch size increases. As

shown in Figure 3.9(a), we find similar behavior for 2-SLIP. Under low offered load the average

cell latency approaches a constant, whereas under high load the delay is approximately propor-

tional to N.

Although similar under low offered load, 4-SLIP exhibits quite different behavior under high

offered load: the average latency can actuallydecrease with N. This is shown in Figure 3.9(b).

Under an offered load below approximately 80% the ordering is strict: increasingN increases

average latency. Between 80% and 100% offered load, the ordering changes — at 99% offered

load the ordering has reversed and the average latency decreases strictly withN.

FIGURE 3.9 The performance ofi-SLIP as function of switch size. Uniform i.i.d. Bernoulli arrivals.

40 50 60 70 80 90 100
0.1

1

10

100

1e+03

Offered Load (%)

A
vg

 C
el

l L
at

en
cy

 (
C

el
ls

)
Size=4

Size=8

Size=16

Size=32

40 50 60 70 80 90 100
0.1

1

10

100

1e+03

Offered Load (%)

Size=4

Size=8

Size=16

Size=32

(a) 2-SLIP (b) 4-SLIP

CHAPTER 3 The SLIP Algorithm with Multiple Iterations 66

It should be noted that themaxsize algorithm does not exhibit the same behavior. The average

latency for themaxsize algorithm always increases withN.

Because of the difficulty of analyzing this algorithm with more than a single iteration, we offer

only a heuristic explanation for this result. We believe the result to be the combination of two

effects. First, for switches up to a size 64x64, the algorithm almost always converges in fewer than

4 iterations. This means that in 4 iterations, the match size is close to themaximal match: the larg-

est match possible without rearranging connections. Second, the number of possible matches

under heavy load equals approximatelyN! which grows rapidly withN. Moreover, asN increases

it becomes more likely that amaximal match equals a maximum match. Hence, with sufficient

iterations and asN increases, it becomes more likely that the SLIP algorithm will find a match

close or equal to a maximum sized match. By comparing the size of the match with the maximum

sized match, we have found this to be the case.

It should be noted that the PIM algorithm exhibits similar behavior. This supports our explana-

tion: PIM like i-SLIP, converges on amaximal match.

4 Variations of Iterative SLIP

In Chapter 2 we found that 1-SLIP performs well because of the desynchronization of the out-

put arbiters under high offered load. As shown in Figure 3.7i-SLIP is less effective at desynchro-

nizing its arbiters, because the pointers can only be updated for connections made by the first

iteration.

In this section we consider two variations oni-SLIP that allow the pointers to be updated after

every iteration. Both variations are significantly more complex to implement than basici-SLIP and

the performance improvements are inconclusive. We believe that these algorithms require further

study.

4.1 Iterative SLIP with LRU Accept Arbiters

Figure 3.1 showed how starvation could occur if we allowed the pointers to be updated after

every iteration. In the example, the problem was not that output 2 never grants to input 1. Rather,

CHAPTER 3 The SLIP Algorithm with Multiple Iterations 67

when input 1 received a grant, it never accepted it. If we can encourage input 1 to accept output 2

if it has not done so recently, then we can prevent the connection from being starved. One way to

achieve this is for the input arbiter to give highest priority to the least recently used (LRU) output1.

We call this algorithm “iterative SLIP output arbiters with LRU input arbiters” (i-SLIP-LRU).

The i-SLIP-LRU algorithm allows us to update the pointers after each iteration so that every

established connection will help desynchronize the output arbiters. Figure 3.10 demonstrates that

1. Starvation could also be avoided by using random selection at the input arbiter.

FIGURE 3.10 i-SLIP-LRU algorithm under uniform i.i.d. Bernoulli traffic. For 1 iteration, the number of
desynchronized schedulers is almost identical to 1-SLIP. However, the number of schedulers increases only slightly with
the number of iterations. This is quite different from i-SLIP for 2 and 4 iterations (see Figure 3.7)

0 10 20 30 40 50 60 70 80 90 100
0

1

2

3

4

5

6

7

8

9

10

11

Offered Load (%)

A
vg

 N
um

be
r

of
 S

yn
ch

ro
ni

ze
d

O
ut

pu
t S

ch
ed

ul
er

s

1−SLIP−LRU

2−SLIP−LRU

4−SLIP−LRU

CHAPTER 3 The SLIP Algorithm with Multiple Iterations 68

unlike i-SLIP, the number of synchronized schedulers fori-SLIP-LRU increases only very slightly

with the number of iterations. This is beneficial in two ways: it means that for a fixed number of

iterations,i-SLIP-LRU will provide higher performance, or alternatively, if run to completioni-

SLIP-LRU will converge faster (Figure 3.11).

FIGURE 3.11 An example of the average number of iterations fori-SLIP-LRU to converge for uniform i.i.d.
Bernoulli traffic as a function of the offered load. The algorithm is run to completion during each cell time to
determine how many iterations are performed before no more connections can be added.

50 55 60 65 70 75 80 85 90 95 100
0

1

2

3

Offered Load (%)

A
vg

 N
um

be
r

of
 It

er
at

io
ns

 T
o

C
on

ve
rg

e

i−SLIP

i−SLIP−LRU

CHAPTER 3 The SLIP Algorithm with Multiple Iterations 69

4.2 Separate Pointers for each Iteration

An alternative way to prevent starvation in iterative SLIP is to maintain a separate pointer for

each iteration. Forn-SLIP, outputj now maintainsn grant pointers, . During the

first iteration, the arbiter uses , updating the pointer if and only if a connection is established

in this iteration. In the next iteration, the arbiter uses , and so on. In other words, the arbiter

pointer is updated at the end of every iteration and for every connection.

We now show that no queue is starved of service by this algorithm. Assume that the queue

Q(i,j) at inputi is non-empty and thus requests service from outputj. Now assume that we are in

iterationk. Outputj is using the pointer , and we shall assume that currently .

During iterationk of every cell time, outputj will grant to inputi until either (i) inputi accepts out-

put j and Q(i,j) is served, or (ii) outputj serves Q(i,j) in iteration , and Q(i,j) becomes empty.

If Q(i,j) does not become empty in iteration , then eventually it will be served in iterationk and

will be updated. So, in either case, Q(i,j) is served and will eventually move. This

means every non-empty queue will eventually be served and none will be starved of service indef-

initely.

The advantage of this algorithm is that the pointers at each iteration tend to become desyn-

chronized. More importantly, every connection that is established helps desynchronize the arbiters.

We find that for the arrival processes described in Section 3, this variation on the basic SLIP

algorithm doesnot improve performance. It therefore does not seem worth the extra complexity of

maintaining multiple pointers at each output. We believe that this requires further study.

5 Implementing Iterative SLIP

To conclude the description ofi-SLIP, we consider the complexity of implementing the algo-

rithm in hardware. Implementation ofi-SLIP is very similar to non-iterative SLIP, described in

Chapter 2 Section 7. Figure 3.12 shows how for an NxN switch, 2N arbiters and an N2-bit memory

gj 1() … gj n(), ,

gj 1()

gj 2()

gj k() gj k() i=

k' k≠

k'

gj k() gj k()

CHAPTER 3 The SLIP Algorithm with Multiple Iterations 70

may be interconnected to implementi-SLIP. The arbiters are almost identical to those used for

non-iterative SLIP. They differ in two ways:

1. When an input or output is matched, its arbiter is disabled in subsequent iterations, pre-
venting it from making additional matches. This is simple for the accept arbiter: when-
ever it makes a decision, it is disabled in all further iterations. However, it is not known
whether a grant arbiter’s decision is accepted until the end of the iteration. The decision
register must feedback an indication to the grant arbiters. This is shown in Figure 3.12.

2. The arbiters only update pointersai andgi after the first iteration.

As before, the complexity ofi-SLIP is dominated by the arbiters. In fact, the number of gates

required to implementi-SLIP is almost identical to non-iterative SLIP.

In some implementations it may be desirable to reduce the number of arbiters, sharing them

among the grant and accept steps of the algorithm. An implementation using only N arbiters is

shown in Figure 3.13. The results from the arbiters in the grant phase are registered and fed back

for the accept phase. The number of gates for this implementation is almost halved, but with the

performance penalty of an extra clock delay through the holding register.

Grant
Arbiters

Accept
Arbiters Decision

1

2

N

1

2

N

Register

FIGURE 3.12 Interconnection of 2N arbiters to implementi-SLIP for an NxN switch.

S
ta

te
 o

f I
np

ut
 Q

ue
ue

s
(N

2
bi

ts
)

N2

N

CHAPTER 3 The SLIP Algorithm with Multiple Iterations 71

Arbiters Decision

S
ta

te
 o

f I
np

ut
 Q

ue
ue

s
(N

2
bi

ts
)

N2

Step

2

1

1

2

N

FIGURE 3.13 Interconnection of N arbiters to implementi-SLIP for an NxN switch. Each arbiter is used for both input
and output arbitration. In this case, each arbiter containstwo registers to hold pointersgi andai.

N2

N

72

CHAPTER 4

Weighted Matching

Algorithms

1 Introduction

In this chapter we describe algorithms that consider more than one bit of information per

queue, for example the occupancy of the queue, or the waiting time of queued cells. These algo-

rithms find the maximum or maximalweight matching, giving preference to queues with a larger

occupancy, or to cells that have been waiting longest.

We saw in Chapter 1 that maximizing the size of the match is not necessarily desirable as this

can lead to instability for an offered load below capacity, and can lead to starvation for an offered

load above capacity. This was demonstrated in Chapter 2 where we considered simple arrival pat-

terns that are unstable for both themaxsize and SLIP algorithms, even for a 2x2 switch. The reason

that these algorithms become unstable is that they only consider one bit of information per input

queue: whether the queue is empty or non-empty. As we shall see, the maximum weight algo-

rithms are stable over a wider range of workloads.

We start by describing two maximum weight matching algorithms,longest queue first(LQF)

andoldest cell first (OCF) and consider their performance. We prove that the LQF algorithm is sta-

ble under i.i.d. arrivals and conjecture that both algorithms, although too complex to implement in

hardware, are stable under all admissible offered loads.

CHAPTER 4 Weighted Matching Algorithms 73

We describe the more practical, parallel and iterative algorithms,i-LQF andi-OCF which

attempt to find maximal weight matchings in a similar manner toi-SLIP and present schematic

implementations of both algorithms.

Finally, we describe an interesting class of algorithms that solve thestable marriage problem.

Solutions to this well-studied problem find a special kind of weighted bipartite matching called a

stable matching. Although stable matchings are generally different from either a maximum sized

or maximum weight match, they provide good performance and are readily implemented in hard-

ware.

2 Maximum Weight Matching

Figure 1.2 shows an example of a matching on a weighted bipartite graph. The maximum

weight matching,M is one that maximizes , where is the weight assigned to the

edge between verticesi andj. As with the maximum size matching, the maximum weight match-

ing for a bipartite graph can be found by solving an equivalent network flow problem. The most

efficient known algorithm for solving this problem converges in running time [41].

We now consider two types of maximum weight matching that may be used to schedule cells

in an input-queued switch: LQF and OCF.

In the LQF algorithm, preferential service is given to input queues that are more heavily occu-

pied. As illustrated in Figure 4.1, this is achieved by defining to be equal to the queue occu-

pancy .

The OCF algorithm gives preferential service to cells that have been queued for a long time.

This is achieved by defining to be equal to the waiting time of the cell at the head of

queue .

wi j,
i j,() M∈
∑ wi j,

O N2log3N()

wi j, t()

Li j, t()

wi j, t() Wi j, t()

Q i j,()

CHAPTER 4 Weighted Matching Algorithms 74

2.1 Starvation with LQF

Under inadmissible traffic it is possible for the LQF algorithm to permanently starve an input

queue. As a simple example, consider the 2x2 switch shown in Figure 4.2. Three queues have an

arrival rate equal to their capacity and will be unstable, growing without bound. Now assume that

Input 1
L1,1(t)=7

L1,N(t)=0

Input N
LN,1(t)=4

LN,N(t)=2

AN(t)

D1(t)

DN(t)

Output 1

Output N

1

2

3

N

1

2

3

N

w1,1(t) =7

wN,N(t) =2

wN,1(t) =4

A1(t)

FIGURE 4.1 Example of weights for the LQF maximum weight matching algorithm.

λ2 1, 1=

λ2 2, 0=

FIGURE 4.2 Example of 2x2 switch for which, using the LQF algorithm, inadmissible traffic may lead to the
starvation of an input queue.

λ1 1, 1=

λ1 2, 1=

CHAPTER 4 Weighted Matching Algorithms 75

all three queues have grown to a length of two cells. Further assume that a single cell arrives at the

fourth queue,Q(2,2), but that no further cells arrive at this queue. Because of the large arrival rate,

the other queues will never contain fewer than two cells and soQ(2,2) will never be served.

OCF, however, cannot starve a queue under any offered load. Cells at the head of queues that

have not been served recently increase in weight until, eventually, they are served.

2.2 Performance of LQF and OCF Algorithms

2.2.1 Uniform Workload

If all switch inputs and outputs are identically loaded, the LQF algorithm has anaverage per-

formance identical to themaxsize algorithm, Figure 4.3(a). This is because there is no benefit, on

average, in distinguishing between different input queues when they all have identical average

arrival rates. We have found this to be the case for a range of uniform workloads with and without

correlated arrivals. The OCF algorithm has a slightly worse average behavior than LQF.

However, because during fluctuations in waiting time it favors cells that have been waiting

longest, thevariance in cell latency is lower for the OCF algorithm. This is illustrated in Figure

4.3(b), where the variance of cell latency is plotted against the offered load.

2.2.2 Non-Uniform Workload

The difference between the maximum weight and maximum size matching algorithms is more

marked under a non-uniform workload, particularly when not all flows are active.

We illustrate this by way of a simple example: an arbitrary arrival pattern for a 4x4 switch,

shown in Figure 4.4. We find that for themaxsize algorithm the switch is unstable for ,

whereas for the LQF and OCF algorithms, the switch is stable for all admissible values of .

The LQF and OCF algorithms maintain much closer average queue lengths than themaxsize

algorithm. Figure 4.5 shows the average cell latency through each of the 16 input queues in the

4x4 switch of Figure 4.4, with all average rates . Even though themaxsize algorithm is

stable for this workload, the average queue lengths differ widely. This difference increases as the

λ 0.31>

λ

λ 0.30=

CHAPTER 4 Weighted Matching Algorithms 76

offered load increases, and it is the three queues that become unstable

FIGURE 4.3 16x16 switch scheduled using the LQF, OCF andmaxsize scheduling algorithms.

10 20 30 40 50 60 70 80 90 100
0.1

1

10

100

Offered Load (%)

A
ve

ra
ge

 C
el

l L
at

en
cy

 (
C

el
ls

)
maxsize

lqf

ocf

10 20 30 40 50 60 70 80 90 100
0.1

1

10

100

1e+03

1e+04

Offered Load (%)

V
ar

ia
nc

e
of

 C
el

l L
at

en
cy

 (
C

el
ls

^2
)

maxsize

lqf

ocf

(b) Variance in cell latency vs. offered load.(a) Average cell latency vs. offered load.

FIGURE 4.4 Example of 4x4 switch with non-uniform traffic pattern. Although admissible, this traffic pattern can be
unstable for the maximum scheduling algorithm. It is stable for the LQF and OCF algorithms.

All flows have identical average arrival rate such thatλ λi j,= λi j,
i I∈
∑ 1< λi j,

j J∈
∑ 1<,

Q 2 1,() Q 2 2,() Q 2 3,(), ,

CHAPTER 4 Weighted Matching Algorithms 77

when the average arrival rate exceeds . Both LQF and OCF maintain average queue

lengths that are almost identical independent of the arrival rate.

2.2.3 Stability of 2x2 Switch

In this section we consider the stability of a 2x2 switch, scheduled with a maximum weight

matching algorithm.

FIGURE 4.5 Variation in queue lengths under the non-uniform workload shown in Figure 4.4, with i.i.d. Bernoulli
arrivals and .λ 0.30=

1,1 1,2 1,3 1,4 2,1 2,2 2,3 2,4 3,1 3,2 3,3 3,4 4,1 4,2 4,3 4,4
0

1

2

3

4

5

Q(i,j)

A
ve

ra
ge

 C
el

l L
at

en
cy

 (
C

el
ls

)

maxsize

lqf

ocf

λ 0.31=

CHAPTER 4 Weighted Matching Algorithms 78

We start with a simple observation: if an arrival pattern is such that all input queues are perma-

nently occupied, the switch will be stable. This is because the switch can serve two queues in

every cell time.

Theorem 4.1:If for all n, LQF and OCF are stable for

a 2x2 switch.

Proof: Assume that at timen the switch is stable. i.e.

 (1)

Because , the LQF and OCF algorithms will always

serve exactly 2 queues. There can be no more than two arrivals to the switch in a cell time, so

 (2)

and so the switch must be stable at timen+1. Hence cannot become unbounded, and the

switch is stable.❒

In general, not all input queues will be permanently occupied. At any time, one or more

queues may be empty and, as a result, the scheduling algorithm may select to serve fewer than two

queues. Recall that it was when one queue was empty that the maximum size matching algorithm

(and SLIP and PIM) could become unstable. However, below we show that for a 2x2 switch LQF

and OCF are stable when one or more queues are permanently empty.

Theorem 4.2:LQF and OCF are stable for the 2x2 switch with three active flows illustrated in

Figure 4.6 and independent arrivals.

Proof: Appendix 3 Section 1 finds sufficient conditions on a scheduling algorithm so that this

switch is stable for independent arrivals:

1. If , then set crossbar to configurationB.

2. Else, if and/or , then set crossbar to configurationA.

3. Else, set crossbar configuration to eitherA or B.

L1 1, n() L1 2, n() L2 1, n() L2 2, n(), , , 0>

L n() L1 1, n() L1 2, n()+ L2 1, n()+ L2 2, n()+ ∞<≡

L1 1, n() L1 2, n() L2 1, n() L2 2, n(), , , 0>

L n 1+() L n()≤

L n()

L1 1, n() 0=

L2 1, n() 0= L1 2, n() 0=

CHAPTER 4 Weighted Matching Algorithms 79

LQF clearly satisfies conditions (1) and (3) above, but not (2). Define an algorithm,G, that is

exactly the same as LQF under conditions (1) and (3), but also satisfies condition (2). Clearly,G is

stable. LQF serves and at least as often asG, so under LQF these two queues must

be stable. It remains to be shown that is stable under LQF. Assume that under LQF,

is unstable. For this to be the case must grow so that at some time

, (3)

and will then be served continuously until

. (4)

During the time that is served continuously, its queue length cannot increase. There-

fore, is bounded by . and are stable, so

is bounded, which means that is stable. An analogous argument

based on waiting times holds for OCF.❒

It is interesting to consider whymaxsize can be unstable for this switch (Chapter 1, Section

3.3). Although the conditions above are not strictly necessary for the switch to be stable, they give

an intuitive explanation. If condition (2) above is true, themaxsizealgorithm may select either

configurationA or B, even if one of the queues grows without bound.

Q 1 2,() Q 2 1,()

Q 1 1,()

Q 1 1,() Q 1 1,()

L1 1, n() 1 L1 2, n() L2 1, n()+ +=

Q 1 1,()

L1 1, n() L1 2, n() L2 1, n()+≤

Q 1 1,()

L1 1, n() 1 L1 2, n() L2 1, n()+ + Q 1 2,() Q 2 1,()

1 L1 2, n() L2 1, n()+ + Q 1 1,()

FIGURE 4.6 2x2 switch with three active flows. The two possible switch configurations,A andB, are shown.

λ1

L1,1(n)

λ2

λ3

L1,2(n)

L2,1(n) B

A

CHAPTER 4 Weighted Matching Algorithms 80

Theorem 4.3:For any arrival process to a 2x2 switch, if for some n

 (5)

then for all

. (6)

Proof: See Appendix 3 Section 2.❒

To summarize these results for a 2x2 switch:

1. For any arrival process, it is not possible for all 4 input queues to become unstable
simultaneously.

2. When arrivals are i.i.d. and only three flows are active, it is not possible for any queue
to become unstable.

3. For any arrival process, if the queues are initially empty, the occupancies of the two

sets of input queues: and can differ by at most four

cells. This means that if instability occurs, at least one queue from each set must be unsta-
ble.

This leads us to make the following conjecture, as yet unproved.

Conjecture: For a 2x2 switch, LQF and OCF are stable for all ergodic, admissible arrival

processes.

2.2.4 Stability of NxN Switch

Theorem 4.4:LQF is stable for all admissible i.id. arrival processes.

Proof: The proof is given in appendix 4. In summary, we show that for an NxN switch sched-

uled using the LQF algorithm, there is a negative single-step drift in the sum of the squares of the

state. In particular,

, (7)

L1 1, n() L2 2, n()+{ } L1 2, n() L2 1, n()+{ }– 3≤

n′ n≥

L1 1, n′() L2 2, n′()+{ } L1 2, n′() L2 1, n′()+{ }– 4≤

L1 1, n() L2 2, n()+ L1 2, n() L2 1, n()+

E LT n 1+()L n 1+() LT n()L n()– L n()[] ε L n()– k+≤

CHAPTER 4 Weighted Matching Algorithms 81

. ❒

The term indicates that whenever the occupancy of the input queues is large enough,

the expected drift is negative. Should become very large, the downward drift also becomes

large, and so the stability is quite “strong”. This leads us to the following conjecture.

Conjecture: LQF and OCF are stable for all ergodic, admissible arrival processes.

One possible definition of stability for ergodic arrivals is

. (8)

Although we have not been able to find admissible arrival processes for which an NxN switch

is unstable using the LQF and OCF, we have not been able to prove that this conjecture is true in

general. This remains an open problem.

3 Iterative Maximal Weight Matching Algorithms

A goal of this work is to determine fast scheduling algorithms that can be readily implemented

in hardware. Unfortunately, the maximum weight matching algorithms, LQF and OCF, are very

complex to implement, and require an running time.

As an alternative, we now consider iterative approximations to LQF and OCF, based on the

SLIP and PIM algorithms, that are designed to be readily implemented in hardware and to quickly

find a maximal weight match. These algorithms are called respectively,i-LQF andi-OCF.

3.1 i-LQF

Like PIM and SLIP,i-LQF is an iterative algorithm consisting of N output and N input arbiters

operating in parallel. The scheduler maintains an word memory; each entry indicates the occu-

pancy of an input queue, . The word width,b, is determined by the maximum queue length,

. (9)

k 0 ε 0>,>

ε L n()–

L n()

1
T

T ∞→
lim E L n()

n 0=

T

∑ ∞<

O N2logaN()

N2

Li j, t()

Lmax

2b Lmax≥

CHAPTER 4 Weighted Matching Algorithms 82

As before, at the beginning of each cell time the match process begins over. All inputs and out-

puts are initially unmatched and only those inputs and outputs not matched at the end of one itera-

tion are eligible for matching in the next. Connections made in one iteration are never removed by

a later iteration, even if a larger sized match would result. The three steps of each iteration are as

follows:

Step 1. Request. Each unmatched input sends a request word of width bits to each out-
put for which it has a queued cell, indicating the number of cells that it has queued to that
output.

Step 2. Grant. If an unmatched output receives any requests, it chooses the largest valued
request. Ties are broken randomly.

Step 3. Accept. If an unmatched input receives one or more grants, it accepts the one to
which it made the largest valued request. Ties are broken randomly.

3.2 Properties

The i-LQF algorithm has the following properties:

Property 1. Independent of the number of iterations, the longest input queue is always
served. The longest input queue will lead to the largest request in the first iteration, which
must be granted, resulting in the largest grant. This must be accepted.

Property 2. As with i-SLIP, the algorithm converges in at most N iterations. If during
some iteration no connection is made, the algorithm has converged and no further con-
nections are possible. So, prior to convergence at least one connection is added per itera-
tion. There are N inputs and N outputs, requiring at most N iterations to converge.

Property 3. For an inadmissible offered load, an input queue may be starved. This is the
same as for LQF, described in Section 2.1.

3.3 i-OCF

The i-OCF algorithm eliminates the starvation problem ofi-LQF by favoring cells with a

longer waiting time.i-OCF differs fromi-LQF only in Step 1: the value of the request from inputi

to outputj equals the waiting time, , of the cell at the head of queue .

2b

Wi j, t() Q i j,()

CHAPTER 4 Weighted Matching Algorithms 83

3.4 Properties

The i-OCF algorithm has the following properties:

Property 1. Independent of the number of iterations, the cell (C) that has been waiting the
longest time in the input queues is served. First note thatC must be at the head of its
FIFO queue. The input will make the largest request to the scheduler in the first iteration
on behalf ofC, which must be granted, resulting in the largest grant. This must be
accepted.

Property 2. As with i-LQF, the algorithm converges in at most N iterations.

Property 3. No input queue can be starved indefinitely.

3.5 Performance ofi-LQF and i-OCF

3.5.1 Uniform Workload

Both i-LQF andi-OCF have worse throughput-delay performance than LQF and OCF. This is

to be expected — neither of the iterative algorithms will remove connections in an attempt to max-

imize the match. The performance of both algorithms under uniform i.i.d. Bernoulli arrivals is

illustrated in Figure 4.7. Once again, both iterative algorithms are stable up to an offered load of

100%, albeit with a slightly larger latency than for the maximum weight algorithms.

3.5.2 Nonuniform Workload

We have not found a workload for which thei-LQF andi-OCF are unstable; under non-uni-

form arrival patterns, both algorithms exhibit similar throughput-delay performance to the LQF

and OCF algorithms. We illustrate this by way of the same simple (but arbitrary) example as

before, shown in Figure 4.4. Our results in Figure 4.8 show not only that thei-LQF andi-OCF

algorithms are stable, but that their performance is very close to the maximum weight algorithms.

3.5.3 Stability for 2x2 Switch

Conjecture: With sufficient iterations, i-LQF and i-OCF are stable for a 2x2 switch with all

admissible workloads.

CHAPTER 4 Weighted Matching Algorithms 84

3.6 Implementation ofi-LQF and i-OCF

Both i-LQF andi-OCF are relatively simple to implement in hardware, although more com-

plex than thei-SLIP algorithm described in Chapter 3. The main difference is that the simple prior-

ity encoders that perform arbitration in SLIP are replaced by more complex comparators.

Figure 4.10 shows a schematic design fori-LQF. The design consists of 2N arbiters.1 Each

FIGURE 4.7 Performance ofi-LQF andi-OCF algorithms for uniform i.i.d. Bernoulli arrivals, compared with LQF
and OCF algorithms.

10 20 30 40 50 60 70 80 90 100
0.1

1

10

100

Offered Load (%)

A
ve

ra
ge

 C
el

l L
at

en
cy

 (
C

el
ls

)

lqf

ocf

ilqf

iocf

CHAPTER 4 Weighted Matching Algorithms 85

For i-LQF, the registers for outputj maintain the occupancy values for each input queue

and similarly, the registers at inputi maintain the occupancy values for each input

queue . If outputj grants to inputi, then grant arbiterj enables the register containing

 at accept arbiteri. The finite state machine prevents matched inputs and outputs from par-

1. As with SLIP, the arbiters may be reduced to N by sharing them between the grant and accept stages.

FIGURE 4.8 Performance ofi-LQF andi-OCF algorithms under the non-uniform workload, shown in Figure 4.4.

0.22 0.23 0.24 0.25 0.26 0.27 0.28 0.29 0.3 0.31 0.32 0.33
0.1

1

10

100

Lambda

A
ve

ra
ge

 C
el

l L
at

en
cy

 (
C

el
ls

)

lqf

ocf

ilqf

iocf

Q i I j,∈()

Q i j J∈,()

Li j, t()

CHAPTER 4 Weighted Matching Algorithms 86

ticipating in future iterations by disabling the corresponding arbiters. The implementation fori-

OCF is exactly the same as fori-LQF, except that the registers hold cell waiting times, rather than

queue occupancies.

The implementation fori-LQF is clearly more complex than fori-SLIP, both in the number of

gates required to implement the arbiters and in the size of the registers required to hold the queue

occupancy values.i-LQF also requires more state to be updated at the beginning and end of each

cell time. In a cell time, at most one queue at each input can increase its occupancy and by only

one cell. The input must indicate to the central scheduler which queue has increased; the scheduler

>

L 1 1,()

L 2 1,()

L N 1,()

input, i

Grant Arbiter, 1

1

N

>

L i 1,()

L i j,()

L i N,()

 j

Accept Arbiter, i

>

L 1 j,()

L 2 j,()

L N j,()

input, i

Grant Arbiter, j

1

i

N

i >

L 1 1,()

L 1 j,()

L 1 N,()

Accept Arbiter, 1

None

Finite State Machine

N

FIGURE 4.9 Implementation of NxNi-LQF algorithm using 2N arbiters. For brevity, only grant arbiters 1 andj and
accept arbiters 1 andi are shown here.

Decoder

Decoder

b

b

b

b

b

b

b

b

b

b

b

b

logN

logN

N

CHAPTER 4 Weighted Matching Algorithms 87

must increment the corresponding value. Likewise, in a cell time, at most one queue at each input

may decrease its occupancy, and by only one cell. The input does not need to indicate which queue

has changed: it is the one that the scheduler selected during its arbitration. The scheduler must dec-

rement the corresponding value.

Choosing the value forb is an important design decision, affecting the number of different

queue lengths that can be distinguished. If the size of the input queues is large, or if the gate count

is to be minimized, it may be required that . Two possible modifications to the algo-

rithm in this case are: (1) if the occupancy , issue a request of size ; or (2) if the

maximum queue size , issue a request of size , which is readily

achieved in hardware by truncating the lowestn-bits.

It is interesting to note that although for small values of N andb the complexity ofi-LQF is

greater than fori-SLIP, its complexity increases more slowly with N. In Chapter 2 we found that

the number of gates required to implementi-SLIP increases with N4. i-LQF consists of 2N com-

parators, each comprising gates and N2 registers each with . For smallb and

N, the comparators will dominate the total number of gates, increasing with . With suffi-

ciently large N, the total gate count is dominated by the registers which increase with N2. In both

cases, this increase is at a slower rate than fori-SLIP.

4 Stable Marriages

Thestable marriage problem was first introduced in 1962 by Gale and Shapley [13] and since

then has been studied extensively [15], [26]. Solutions to the stable marriage problem find astable

and complete matching on a bipartite graph and can therefore be used to schedule cells in an input-

queued switch. More importantly, there exists a well known algorithm (the Gale-Shapley Algo-

rithm — GSA) that is feasible to implement in hardware and will always find a stable matching in

N iterations.

2b Lmax<

Li j, t() 2b≥ 2b

Lmax 2b 2n×= Li j, t() 2n⁄

O b Nloglog() O b()

N Nlog

CHAPTER 4 Weighted Matching Algorithms 88

We begin this section with a description of the stable marriage problem and describe the GSA.

We then consider two different ways that the GSA can be used to schedule cells in an input-queued

switch; one is a variation of LQF and the other a variation of OCF. We finish the section with a

description of the implementation of these algorithms.

4.1 The Stable Marriage Problem

Although rather dated, the classical problem is stated in terms of two equal-sized sets: a set of

N men and a set ofN women all of whom wish to get married to a member of the other set. Each

man independently creates an ordered preference list, ranking each of theN women. Each woman

does the same, ranking each of theN men. The aim is to find astable matching between the set of

men and women so that each man is matched to a woman and each woman is matched to a man. A

match isunstable if there is a couple who are not matched to each other, yet both prefer the other

to their partner in the matching. Astable matching is any matching that is notunstable.

4.2 The Gale-Shapley Algorithm

In their original paper, Gale and Shapley prove that:

1. Every instance of the stable marriage problem admits at least one stable matching.
They prove this with an algorithm, GSA, that will always find a matching in run-
ning time.

2. The GSA has two distinct versions: the male-optimal GSA and the female-optimal
GSA. The male-optimal GSA will simultaneously give all the men the best partner and
all the women the worst partner that they could have in any stable matching; and vice-
versa for the female-optimal GSA.

The Gale-Shapley Algorithm is usually expressed in terms of a series of marriage proposals.

In the male-optimal version, the proposals are always from men to women. We will describe here

the male-optimal version of the algorithm.1 Initially, each person isfreeand may becomeengaged

as the algorithm progresses. Women who become engaged never become free again, whereas

engaged men may be rejected by their partner and become free again.

1. The female-optimal algorithm is obtained by simply reversing the roles of the sexes.

O N2()

CHAPTER 4 Weighted Matching Algorithms 89

Each man proposes to the women, one at a time, in the order that they appear in his preference

list. If the woman that he proposes to is free, she will accept his proposal. If she is already

engaged, but prefers the new proposal, she will reject her previous partner in favor of the new

man. The rejected man is now free and will resume making proposals to the remaining women in

his preference list. The algorithm terminates when everyone is engaged.

The somewhat surprising findings of Gale and Shapley were that the algorithm will always

converge before any man reaches the end of his preference list, and that on completion of the algo-

rithm the engaged couples always form a stable matching.

4.3 Analogy to Switch Scheduling

A stable matching is an example of a bipartite graph matching. As described in Chapter 1,

scheduling cells in an input-queued switch is analogous to finding a bipartite graph matching

between the set of switch inputs and outputs. So if, for example, we assign the set of men to repre-

sent the switch outputs and the set of women to represent the switch inputs, a stable matching will

represent a legal switch configuration.

Next we shall consider the principle ways that the GSA differs from the iterative algorithms

discussed earlier in this thesis. We then describe two algorithms, GS-LQF and GS-OCF, that are

based on the GSA and may be used for scheduling cells in an input-queued switch.

There are three main ways in which the GSA differs from the iterative maximum weight algo-

rithms described earlier in this chapter:

1. A stable matching is in general different from a maximum sized or maximum weight
matching. It is not clear that a stable matching will lead to an efficient use of switch band-
width, or that it will prevent connections from being starved of service. In particular, we
know that the GSA will favor either outputs or inputs. Later, we will consider an algo-
rithm that provide a more egalitarian matching.

2. The stable marriage problem and the GSA are usually defined for a complete matching
in which every input and every output is matched. It is not always the case in an input-
queued switch that a complete match is possible: most often, only a subset of the input-
queues are occupied. This means that some inputs and outputs will have missing entries
in their preference lists. Fortunately, with a small modification, the GSA algorithm will

CHAPTER 4 Weighted Matching Algorithms 90

still work.1 However, it is known that just a few missing elements in preference lists can
lead to a large reduction in the size of a stable matching [15].

3. In the iterative algorithmsi-SLIP, i-LQF andi-OCF, once a connection has been
accepted it is not rejected by a later iteration. In the GSA, connections made in one itera-
tion may be rejected by a later iteration. In principle, by rearranging connections the GSA
can find a larger sized or weight match than iterative algorithms that do not remove con-
nections established in an earlier iteration. The benefit of this is not clear: in (1) above we
saw that the stable matching does no attempt to maximize either the size or the weight of
a match.

4.3.1 The GS-LQF Algorithm

GS-LQF (GSA with LQF preference lists) is the Gale-Shapley algorithm with preference lists

based on the occupancy of the input queues.

Outputj determines its preference list based on the occupancy of each of theN input

queues,

. (10)

Similarly, inputi determines its preference list

. (11)

4.3.2 The GS-OCF Algorithm

GS-OCF (GSA with OCF preference lists) is the Gale-Shapley algorithm with preference lists

based on the waiting time of the cells at the head of each input queue.

Output j determines its preference list based on the waiting times of the cells at the

head of each of theN input queues,

. (12)

Similarly, inputi determines its preference list

. (13)

1. It may be shown that the algorithm will partition the inputs and outputs into those that are matched in all stable
matchings and those that are never matched [15].

RO j()

L i j,() i I∈∀,

RO j() i1 i2 … iN, , ,[] where: L i1 j,() L i2 j,() … L iN j,()≥ ≥ ≥,=

RI i() j1 j2 … jN, , ,[] where: L i j 1,() L i j 2,() … L i j N,()≥ ≥ ≥,=

RO j()

W i j,() i I∈∀,

RO j() i1 i2 … iN, , ,[] where: W i1 j,() W i2 j,() … W iN j,()≥ ≥ ≥,=

RI i() j1 j2 … jN, , ,[] where: W i j1,() W i j2,() … W i jN,()≥ ≥ ≥,=

CHAPTER 4 Weighted Matching Algorithms 91

4.4 Performance of GS-LQF and GS-OCF Algorithms

The performance of the GSA depends on the weight of the stable matching. In general, the

relationship between a stable matching and a maximal weight matching is unknown. In fact, it is

not intuitively obvious that a stable matching algorithm will perform well in this application, par-

ticularly when several of the input queues are empty.

Surprisingly, we have found through simulation that the performance of the GS-LQF and GS-

OCF1 algorithms are, respectively,indistinguishable from the performance ofi-LQF andi-OCF. It

remains an open problem whether the performance is identical for all traffic patterns.

4.5 Implementation of GS-LQF and GS-OCF

We now describe a parallel, iterative version of the GSA to match inputs to outputs in an

input-queued switch. The algorithm is relatively simple to implement in hardware, although more

complex than thei-SLIP algorithm described in Chapter 3.

Figure 4.10 shows the schematic design of GS-LQF which is almost identical to the imple-

mentation ofi-OCF in Figure 4.10. As withi-LQF, the design consists of 2N arbiters. Each grant

arbiter maintains a register value for each of the requesting input queues. For GS-LQF, the regis-

ters at outputj maintain the preference list: the occupancy values for each input queue, in

Equation 11. Similarly, the registers at inputi maintain the elements of . The Finite State

Machine controls the preference lists at each arbiter by enabling only those that are active in a par-

ticular iteration.

In the first iteration, all of the entries in the arbiters’ preference lists are enabled. Each output

will grant (“propose”) to the input which makes the largest request. For example, in Figure 4.10,

grant arbiters 1 andj both grant to inputi. Grants are single bit values, used to enable entries in an

accept arbiter’s preference list. The input may or may not have already accepted a grant. If it has

not, then it accepts the largest enabled entry in its preference list. If it has, then it only accepts the

new value if it exceeds the value of the previously accepted grant.

1. Our simulations only considered the output-optimal algorithms.

RO j()

RI i()

CHAPTER 4 Weighted Matching Algorithms 92

As with the implementation ofi-LQF the complexity of the implementation of GS-LQF

depends on the number of bits,b, used to represent . This will determine the number of

gates required to register the preference lists, and the number of gates required to imple-

ment each comparator, .

4.6 Egalitarian Stable Marriage

In [15], the authors describe an algorithm to find an egalitarian stable marriage. Whereas the

male-optimal GSA simultaneously:

>

L 1 1,()

L 2 1,()

L N 1,()

input, i

Grant Arbiter, 1

1

N

>

L i 1,()

L i j,()

L i N,()

 j

Accept Arbiter, i

>

L 1 j,()

L 2 j,()

L N j,()

input, i

Grant Arbiter, j

1

i

N

i >

L 1 1,()

L 1 j,()

L 1 N,()

Accept Arbiter, 1

None

Finite State Machine

N N

FIGURE 4.10 Implementation of NxN GS-LQF algorithm using 2N arbiters. For brevity, only grant arbiters 1 andj
and accept arbiters 1 andi are shown here.

Decoder

Decoder

Selection

Selection

Li j, t()

O bN2()

O N bloglog()

CHAPTER 4 Weighted Matching Algorithms 93

 (14)

the egalitarian stable matching

 (15)

where:

the position of womanw in manm’s preference list,

the position of manm in womanw’s preference list.

If we could use this algorithm to schedule cells, it would remove the decision as to whether to

give preference to either inputs or outputs. Unfortunately, the best known algorithm for finding an

egalitarian matching requires an running time and is impractical to implement in hard-

ware.

minimizes Rm m w,()
m w,() M∈

∑ and,

maximizes Rw w m,()
m w,() M∈

∑

minimizes Rm m w,() Rw w m,()+[] ,
m w,() M∈

∑

Rm m w,() =

Rw w m,() =

O N4()

94

References

[1] Akata, M.; Karube, S.-I.; Sakamoto, T.; Saito, T.; Yoshida, S.; Maeda, T. “A 250 Mb/s 32x32
CMOS crosspoint LSI for ATM switching systems,” IEEE J. Solid-State Circuits,Vol.25,
No.6, pp.1433-1439, Dec. 1990.

[2] Ali, M.; Nguyen, H. “A neural network implementation of an input access scheme in a high-
speed packet switch,” Proc. of GLOBECOM 1989, pp.1192-1196.

[3] Anderson, T.; Owicki, S.; Saxe, J.; and Thacker, C. “High speed switch scheduling for local
area networks,” ACM Trans. on Computer Systems.Nov 1993 pp. 319-352.

[4] Anick, D.; Mitra, D.; Sondhi, M.M. “Stochastic theory of a data-handling system with mul-
tiple sources,” Bell System Technical Journal,Vol.61, pp.1871-1894, 1982.

[5] Brown, T.X; Liu, K.H. “Neural network design of a Banyan network controller,” IEEE J.
Selected Areas Communications, Vol.8, pp.1289-1298, Oct. 1990.

[6] Chen, M.; Georganas, N.D., “A fast algorithm for multi-channel/port traffic scheduling”
Proc. IEEE Supercom/ICC ‘94, pp.96-100.

[7] Cruz, R., “A calculus for network delay, part I: network elements in isolation,” IEEE Trans.
Information Theory, Vol. 37, No.1, pp.114-121, 1991.

[8] Demers, A.; Keshav, S.; Shenker, S. “Analysis and simulation of a fair queueing algorithm.”
Internetworking: Research and Experience, Sept. 1990, vol.1, (no.1):3-26.

[9] Dinic, E.A. “Algorithm for solution of a problem of maximum flow in a network with power
estimation,” Soviet Math. Dokl. Vol.11, pp. 1277-1280, 1970.

[10] Elwalid, A.I.; Mitra, D. “Effective bandwidth of general Markovian traffic sources and
admission control of high speed networks,” IEEE/ACM Trans. Networking, June 1993,
vol.1, (no.3):329-43.

[11] Eng, K.; Hluchyj, M.; and Yeh, Y. “Multicast and broadcast services in a knockout packet
switch,” INFOCOM ‘88, 35(12) pp.29-34.

[12] Even, S.; Tarjan, R.E. “Network flow and testing graph connectivity”, SIAM J. Comput., 4
(1975), pp.507-518.

[13] Gale, D.; Shapley, L.S.; “College Admissions and the stability of marriage”, American
Mathematical Monthly, Vol.69, pp9-15, 1962.

95

[14] Giacopelli, J.; Hickey, J.; Marcus, W.; Sincoskie, D.; and Littlewood, M. “Sunshine: A
high-performance self-routing broadband packet switch architecture,” IEEE J. Selected
Areas Communications, Vol.9, No.8, pp.1289-1298, Oct 1991.

[15] Gusfield, D; Irving, R; “The Stable Marriage Problem: Structure and Algorithms”, The
MIT Press, Cambridge, MA, USA. 1989.

[16] Heffes, H.; Lucantoni, D. M., “A Markov modulated characterization of packetized voice
and data traffic and related statistical multiplexer performance,” IEEE J. Selected Areas in
Communications, 4, 1986, pp.856-868.

[17] Hopcroft, J.E.; Karp, R.M. “An algorithm for maximum matching in bipartite
graphs,” Society for Industrial and Applied Mathematics J. Comput., 2 (1973), pp.225-231.

[18] Hopfield, J.J. “Neural networks and physical systems with emergent collective computa-
tional abilities,” Proc. National Academy of Science, Vol. 79 pp.2554-2558, 1982.

[19] Huang, A.; Knauer, S. “Starlite: A wideband digital switch,” Proc. GLOBECOM ‘84
(1984), pp.121-125.

[20] Hui, J.; Arthurs, E. “A broadband packet switch for integrated transport,” IEEE J.
Selected Areas Communications, 5, 8, Oct 1987, pp 1264-1273.

[21] Jain, R.; Routhier, S.A. “Packet Trains: measurements and a new model for computer net-
work traffic,” IEEE J. Selected Area Communications, Vol.4, pp.986-995, 1986.

[22] Karol, M.; Hluchyj, M.; and Morgan, S. “Input versus output queueing on a space division
switch,” IEEE Trans. Communications, 35(12) (1987) pp.1347-1356.

[23] Karol, M.; Hluchyj, M. “Queueing in high-performance packet-switching,” IEEE J. Selected
Area Communications, Vol.6, pp.1587-1597, Dec. 1988.

[24] Karol, M.; Eng, K.; Obara, H. “Improving the performance of input-queued ATM packet
switches,” INFOCOM ‘92, pp.110-115.

[25] Karp, R.; Vazirani, U.; and Vazirani, V. “An optimal algorithm for on-line bipartite match-
ing,” Proc. 22nd ACM Symp. on Theory of Computing, pp.352-358 Maryland, 1990.

[26] Knuth, D.E; “Marriages Stables”, Les Presses de l’Université de Montréal, Montréal, 1976.
[27] Kumar, P.R.; Meyn, S.P.; “Stability of Queueing Networks and Scheduling Policies”, IEEE

Transactions on Automatic Control, Vol.40, No.2, Feb. 1995.
[28] Low, S.; Varaiya, P. “Burstiness bounds for some burst reducing servers,” Proc. INFO-

COM ‘93, pp.2-9, March 1993.
[29] Kelly, F.P.. “Effective bandwidths at multiclass queues,” Queueing Systems Theory and

Applications, Oct. 1991, vol.9, (no.1-2):5-15.
[30] Keshav, S. “On the efficient implementation of fair queueing,” Internetworking: Research

and Experience, Sept. 1991, vol.2, (no.3):157-73.
[31] Kesidis, G.; Walrand, J.; Chang, C.-S. “Effective bandwidths for multiclass Markov fluids

and other ATM sources.” IEEE/ACM Transactions on Networking,Aug. 1993, vol.1,
(no.4):424-8.

[32] Leland, W.E.; Willinger, W.; Taqqu, M.; Wilson, D. “On the self-similar nature of Ethernet
traffic”, Proc. of Sigcomm, San Francisco, 1993, pp.183-193.

[33] Li, S.-Y. “Theory of periodic contention and its application to packet switching”, Proc. of
INFOCOM 1988, pp.320-325.

[34] Marrakchi, A.; Troudet, T.P. “A neural net arbitrator for large crossbar packet switches,”
IEEE Trans. Circuits and Systems, Vol.CAS-36, pp.1039-1041, July 1989.

[35] Matsunaga, H.; Uematsu, H. “A 1.5Gb/s 8x8 cross-connect switch using a time reservation
algorithm,” IEEE J. Selected Area Communications, Vol.9, No.8, pp.1308-1317, Oct. 1991.

[36] Neuts, M. “Matrix Geometric Solutions in Stochastic Models: An Algorithmic Approach,”
Johns Hopkins University Press, Baltimore, 1981.

[37] Obara, H. “Optimum architecture for input queueing ATM switches,” IEE Electronics Let-
ters, pp.555-557, 28th March 1991.

[38] Obara, H.; Hamazumi, Y. “Parallel contention resolution control for input queueing ATM
switches,” IEE Electronics Letters, Vol.28, No.9, pp.838-839, 23rd April 1992.

n
5/2

96

[39] Obara, H.; Okamoto, S.; and Hamazumi, Y. “Input and output queueing ATM switch archi-
tecture with spatial and temporal slot reservation control” IEE Electronics Letters, pp.22-
24, 2nd Jan 1992.

[40] Tamir, Y.; Frazier, G. “High performance multi-queue buffers for VLSI communication
switches,” Proc. of 15th Ann. Symp. on Comp. Arch., June 1988, pp.343-354.

[41] Tarjan, R.E. “Data structures and network algorithms,” Society for Industrial and Applied
Mathematics, Pennsylvania, Nov 1983.

[42] Troudet, T.P.; Walters, S.M. “Hopfield neural network architecture for crossbar switch
control,” IEEE Trans. Circuits and Systems,Vol.CAS-38, pp.42-57, Jan.1991.

[43] Wolff, R.W. “Stochastic modeling and the theory of queues,” Prentice Hall Intl., New Jer-
sey, 1989.

[44] Zhang, H.; Keshav, S. “Comparison of rate-based service disciplines,” Computer Communi-
cation Review, Sept. 1991, vol.21, (no.4):113-21.

[45] Zhang, L. “Virtual Clock: A New Traffic Control Algorithm for Packet Switching Net-
works,” ACM Transactions on Computer Systems, Vol 9. No.2, pp.101-124, May 1991.

97

APPENDIX 1

Arbiter Synchronization for

Single-Iteration SLIP

In this appendix, we find an approximate expression for the expected number of synchronized

output schedulers, .

We partition the set of switch inputs into two subsets at time t: , the set

of inputs that are matched and , the set of inputs that are not matched. If the arrival rate aver-

aged across all inputs isλ, then for a sustainable and stationary ergodic arrival process the

expected match size is and on average, inputs will send a cell. Clearly then, the expected

size of and are

. (1)

Similarly, we partition the set of switch inputs into two subsets at time t:

AO(t)andBO(t). AO(t) is the set of outputs that are matched to inputs inA(t), andBO(t) are the out-

puts not matched at time t.

As a result of the matching at time t, the set is transformed into the set , the set of

inputs that the outputs inAO(t) point to at time t+1. Each element in is unique, and because

E S t()[]

I 1 … N, ,{ }= A t()

B t()

λN λN

A t() B t()

E A t()[] λN= E B t()[] 1 λ–() N λN= =,

O 1 … N, ,{ }=

A t() Ã t 1+()

A t()

APPENDIX 1 Arbiter Synchronization for Single-Iteration SLIP 98

they were matched at time t, each element mapped from into is also unique. The

expected size of is

. (2)

Because none of its elements are matched, the set is unchanged, i.e. .

To determine , the expected number of synchronized output arbiters at time t+1,

we must find the number of elements in that are still unique and the number that clash

with elements mapped from . Without loss of generality, and to simplify our calculations, we

assume that a one-to-one mapping is applied to such that and hence

. As before, the elements of are unique, and we can think of the elements

of as randomly distributed overI . This is shown in Figure A1.1.

To find , we partition into elements that are mapped into , and

elements that are mapped into .

A t() Ã t 1+()

Ã t 1+()

E Ã t 1+()[] E Ã t()[] E A t()[] λN= = =

B t() B̃ t 1+() B t()=

E S t 1+()[]

Ã t 1+()

B t()

Ã t 1+() Ã t 1+() A t()=

B̃ t 1+() B t()≠ Ã t 1+()

B̃ t 1+()

FIGURE A1.1 Mapping of matched and unmatched inputs at timet, to modified sets at timet+1.

Ã t 1+() B̃ t 1+()

A t() B t()

B1 t()

I

B0 t()

E S t 1+()[] B t() B0 t() Ã t 1+()

B1 t() B̃ t 1+()

APPENDIX 1 Arbiter Synchronization for Single-Iteration SLIP 99

Finally, we define and as the number of unique elements in and

respectively, and

. (3)

If we assume that under the mapping the elements of areuniformly distributed inI , then

 (4)

and,

 (5)

Hence,

 (6)

To find we need to know the distributions of and . Unfortunately, both

random variables depend on the traffic arrival pattern. Furthermore, we cannot use Jensen’s ine-

quality to bound Eq. 6 from below or above. This is because Eq. 4 is a concave function of

and whereas Eq. 5 is convex.

However, simulations with a variety of arrival patterns indicate that is relatively

insensitive to traffic statistics. We therefore approximate the random variables with

 and .

UA t 1+() UB t 1+() Ã t 1+()

B̃ t 1+()

E S t 1+()[] N E UA t 1+()[]– E UB t 1+()[]–=

B t()

E UA t 1+() Ã t 1+() B0 t(), Ã t 1+()
Ã t 1+() 1–

Ã t 1+()
------------------------------- 

  B0 t()
⋅=

E UA t 1+() B t() B1 t(),[] N B t()–() N B t()–() 1–
N B t()–()

-------------------------------------- 
  B t() B– 1 t()

⋅=∴

E UB t 1+() B̃ t() B1 t(), B1 t()
B̃ t 1+() 1–

B̃ t 1+()
------------------------------- 

  B1 t() 1–
⋅=

E UB t 1+() B t() B1 t(), B1 t()
B t() 1–

B t()
--------------------- 

  B1 t() 1–
⋅=∴

E S t 1+() B t() B1 t(),

N N B t()–() N B t()–() 1–
N B t()–()

-------------------------------------- 
  B t() B– 1 t()

B1 t()
B t() 1–

B t()
--------------------- 

  B1 t() 1–
.⋅–⋅–

=

E S t 1+()[] B t() B1 t()

B t() B1 t()

E S t 1+()[]

B t() E B t()[]≈ λN= B1 t() E B1 t()[]≈ λ
2
N=

APPENDIX 1 Arbiter Synchronization for Single-Iteration SLIP 100

This leads us to the approximation,

. (7)E S t()[] N λN
λN 1–

λN
---------------- 

  λλN– λ2N
λN 1–

λN
---------------- 

  λ2N 1–
–≈

101

APPENDIX 2

Stability of Single-Iteration

SLIP Algorithm

1 Single-Step Drift Analysis of 2x2 Switch with 1 Queue

1.1 First Approximation

Consider the switch in Figure A2.1. All three arrival processes are i.i.d. Bernoulli. We wish to

find the values ofλ, ε1 andε2 for which the switch isstable.

Define to be the expected value of (the occupancy of Q(1,1) at timen+1) condi-

tioned on and

. (1)

λ
ε1

ε2

L(n)

FIGURE A2.1 2x2 switch with a single queue.

L̂ L n 1+()

L n() L n() 0>

L̂ E L n 1+() L n() L n() 0>,[]=

APPENDIX 2 Stability of Single-Iteration SLIP Algorithm 102

If then has a single-step positive drift which means that

and the switch is unstable.

This system may be described as a discrete-time Markov chain (DTMC) with state

 (2)

where L is the occupancy of , the value of the pointerg1 at output 1, and the value of

the pointera1 at input 1. The evolution of state for the switch using the SLIP algorithm, condi-

tioned on and is shown below

where . The state transition matrix,P conditioned on and

 is

 (3)

from which we obtain the steady-state distribution

 (4)

Fromπ we find

L̂ L n()– 0> L n() E L n()[] ∞→

XL g1 a1,()=

Q 1 1,()

L n() 0> λ 0=

L (0, 0)

L (0, 1)

L (1, 0)

L (1, 1)

L-1 (0, 0)

L-1 (0, 1)

L-1 (1, 0)

L-1 (1, 1)

ε2

ε1
ε1ε2

ε1ε2ε1ε2

ε2

ε1

1

ε1ε2

g1 a1

ε1 1 ε1–= ε2, 1 ε2–= L n() 0>

λ 0=

P

0 0 0 1

ε1 0 0 ε1

ε2 0 0 ε2

ε1ε2 ε1ε2 ε1ε2 ε1ε2

=

π 1 1,() 1
1 ε1ε2 ε1ε2 ε1ε2 1 ε1 ε2+ +()+ + +
--=

π 1 0,() ε1ε2 π L 1 1, ,()⋅=

π 0 1,() ε1ε2 π L 1 1, ,()⋅=

π 0 0,() ε1ε2 1 ε1 ε2+ +()[] π L 1 1, ,()⋅=

APPENDIX 2 Stability of Single-Iteration SLIP Algorithm 103

(5)

which if we consider the arrivals at rateλ givesJ, the expected single-step increase function

 (6)

where we define because of the symmetric and identical dependence onε1 and

ε2. The unstable region of operation is given by

. (7)

We can find the maximum positive drift (the “most unstable operating point”) by defin-

ing

 (8)

From Eq. 6 we find that which tells us that the drift can be positive for any

value of , or alternatively

. (9)

1.2 Second Approximation

The first approximation assumes that cells arriving at ratesε1 andε2 are discarded if they are

not successfully scheduled. However, if unsuccessful cells are queued rather than discarded, they

will affect the service rate of over multiple cell times. We model this effect by approximat-

ing thebusy andidle cycles of input queues and with a 2-state Markov process,

shown in Figure A2.2.

The behavior of and may be modelled by an M/G/1 queue with an arrival rate

λ2 and service rate . From [43] the expected duration of the busy and idle cycles

(10)

(11)

L̂ L n()
1

1 ε1ε2 ε1ε2 ε1ε2 1 ε1 ε2+ +()+ + +
--–=

J λ 1

1 2ε ε2 2ε3–+ +
---–=

ε ε1= ε2=

λ 1

1 2ε ε2 2ε3–+ +
--->

Jmax

λ 1 ε– δ,–= δ 1<

Jmax δ 0=
0.098≈

δ 0.098<

J 0> λ ε+ 1 0.098–>⇒

Q 1 1,()

Q 1 2,() Q 2 1,()

Q 1 2,() Q 2 1,()

1
1
2
---λ1–

E B[] 1

1
1
2
---λ1– 

  λ2–
------------------------------------- p

1 p–
------------= =

E I[] 1
λ2
----- q

1 q–
------------= =

APPENDIX 2 Stability of Single-Iteration SLIP Algorithm 104

from which we obtainp andq as functions ofλ1 andλ2.

To find

(12)

we model the evolution of the system using a DTMC with state

(13)

λ1 Μ(n)

L(n)

busy

idle

p

1-p

q

1-q

Μ(n)

M(n)=1

M(n)=0

FIGURE A2.2 (a) Approximation of arrivals as an on-off process modulated by a 2-state discrete-time Markov chain,
M(n). (b) The arrival process models the busy/idle cycles of input queues Q(1,2) and Q(2,1). (c) The Markov chain
alternates between the busy and idle states. In the busy state, the arrival rate is 1. In the idle state the arrival rate is 0.

(a)

(b) (c)

λ2

M/G/1

L̂ E L n 1+() L n() L n() 0>,[]=

X g1 a1 s1 s2, , ,()=

APPENDIX 2 Stability of Single-Iteration SLIP Algorithm 105

wheresi is the state (busy or idle) of the 2-state DTMC modulating the arrival process at input

i. The state 16x16 transition matrix is

from which we find the steady-state distribution

. (15)

For brevity, we show an example of just one element of the distribution

We find fromπ and the expression

 (17)

This leads to an expression for the single-step drift functionJ as the ratio of two 10th degree

polynomials. As a result, we have only been able to find the conditions onλ1 andλ2 numerically

such thatJ is negative and the switch is stable.

P =

0100 10 11 0100 10 11 0100 10 11

00
01
10
11

00
01
10
11
00
01
10
11

(14)

0100 10 11

00
01
10
11

s1 s2, B B,()= B I,() I B,() I I,()

I
I,

(
)

I
B,

(
)

B
I,

(
)

B
B,

(
) p2

pq

q2

pqpq

p2

p2

p2

qq

pp
pp
pp

pp

pp
pp

pp
pp

pq

pq
pq

pq
pq

pq

pq

pq
pq

pq

pq
pq

pq

pq pqpq
pq

pq

pq
pq

pq

pq
pq

pq

pq

pq

pq

pq
pq

q2

q2

q2

q2

q2

q2

q2

qq
qq
qq

qq
qq
qq
qq

pp
pp
pp

pp

π π B B 0 0, , ,()… π I I 1 1, , ,(),()=

π B B 0 0, , ,() p q 1–() 2 p2q2 pq2– p3q 3qp2– 5pq 2q– p3– p2 3p– 2+ + + +()
q2p3 p2q2 3q2p– q2 p4q p3q– p3q– 2qp2– 7pq 3q– p4 p3 2p2 3p– 3+ + +–+ + + +() q 2– p+() 2

---=

 (16)

L̂

L̂ L n() π B B 0 0, , ,() π B I 0 0, , ,() π I B 0 0, , ,() π I I 0 0, , ,() π B I 1 0, , ,()
π I B 0 1, , ,() π I I 0 1, , ,() π I I 1 0, , ,() π I I 1 1, , ,()

+ + + +
+ + + +
[

]
–=

APPENDIX 2 Stability of Single-Iteration SLIP Algorithm 106

2 Matrix Geometric Solution for 2x2 Switch with 1 Queue

Consider again the switch in Figure A2.1. In this section, we find the steady-state distribution

function for the queue occupancy, L and find the values ofλ andε necessary for stability. To do

this, we use the matrix-geometric technique of Neuts [36]. We define the state

 (18)

where and wish to solve the infinite sys-

tem of linear equations

 (19)

where

, (20)

e is the column vector with all its elements equal to 1, and the transition probability matrix is

of the form

. (21)

In this example, is most easily understood when separated into two parts, conditioned on

whether or not an arrival occurs

 (22)

X X0 X1 X2 …, , ,[]=

XL L g1 a1, ,() g1 0 1,{ } a1 0 1,{ }∈,∈;{ }=

Π ΠP̃,= Πe 1=

Π Π0 Π1 Π2 …, , ,[] ,= Πi steady-state distribution ofXi=

P̃

B0 A0 0 …

B1 A1 A0 …

B2 A2 A1 …

… … … …

=

P̃

P̃ λP̃λ λP̃λ+=

APPENDIX 2 Stability of Single-Iteration SLIP Algorithm 107

where and are

Clearly, is of the form of Eq. 21.

To find the steady state distributionΠ, we use Lemma 1.2.3 and Theorem 1.2.1 of [36]. If is

positive recurrent, then we can find (using a method outlined on page 9 of [36]) a unique matrixR

which satisifies the equation

, where is as shown in Eq. 21. (23)

such that for , the spectral radius ofR,sp(R)<1, the matrix

 (24)

P̃λ P̃λ

P̃λ =

0100 10 11 0100 10 11 0100 10 11
00
01
10
11
00
01
10
11
00
01
10
11

1
ε
ε
ε2

ε
ε
ε2 εε εε

1
ε
ε
ε2

ε
ε
ε2 εε εε

1
ε
ε
ε2

ε
ε
ε2 εε εε

P̃λ =

0100 10 11 0100 10 11 0100 10 11
00
01
10
11
00
01
10
11
00
01
10
11

1
ε
ε
ε2

ε
ε
ε2 εε εε

1
ε
ε
ε2

ε
ε
ε2 εε εε

1
ε
ε
ε2

ε
ε
εε εε ε2

L=0 L=1 L=2

P̃

P̃

R R
k

k 0=

∞

∑ Ak= Ak

Πi 1+ ΠiR= i 0≥

B R[] R
k
Bk

k 0=

∞

∑=

APPENDIX 2 Stability of Single-Iteration SLIP Algorithm 108

is stochastic,

, and (25)

. (26)

Alternatively, for the Markov chain to be positive recurrent (i.e. for the system to be stable) it

is necessary that the spectral radius ofR be less than 1.

Solving forR andB[R] we obtain

 (27)

, (28)

where

. (29)

The spectral radius

 (30)

which is identical to the stability requirement of Eq. 7.

We can also solve Eq. 25 and Eq. 26 above to find . The resulting expression is a vector of

elements, each of which is the ratio of two 6th order polynomials inε andλ from which we can

successively generate . We do not repeat these (long) expressions here.

Π0 I R–() 1–
e 1=

Π0 Π0B R[]=

R g ε λ,()

0 0 0 0

1 2ελ– 2ε2λ+ 1 ε–() ελ 1 ε–() ελ λ
1 λ–

1 2ελ– 2ε2λ+ 1 ε–() ελ 1 ε–() ελ λ
1 λ–

ε 3 2ε– 2λ– 2ελ+() 1 ε– 1 ε–
λ 2 ε 2ε2– 2ελ– 2ε2λ+ +()

1 λ–

=

B R[]

1 λ– 0 0 λ
ε 1 λ–() 1 ε– λ– ελ+ 0 λ
ε 1 λ–() 0 1 ε– λ– ελ+ λ
ε2 1 λ–() 1 ε–() ε 1 λ–() 1 ε–() ε 1 λ–() 1 2ε– ε2 2ελ ε2λ–+ +

=

g ε λ,() ελ
1 2ελ– ε2λ– 2ε3λ 2ε2λ2 2ε3λ2–+ +()

--=

sp R() 1< λ 1

1 2ε ε2 2ε3–+ +
---<⇔

Π0

Π1 Π2 Π3 …, , ,

109

APPENDIX 3

Stability of 2x2

Switch

1 Stability of 2x2 Switch with 3 Active Flows (Theorem 4.2)

In this section, we find sufficient conditions on a scheduling algorithm for a 2x2 switch with 3

active flows such that the switch is stable under all admissible, arrival processes with i.i.d. interar-

rival times. The switch is illustrated in Chapter 4 Figure 4.6.

1.1 Definitions

Define the vector of queue occupancies

. (1)

We now consider the single-step change in conditioned on whether the switch is in con-

figurationA or B, as shown in Chapter 4 Figure 4.6:

L n() L1 1, n() L1 2, n() L2 1, n(), ,()=

L n()

APPENDIX 3 Stability of 2x2 Switch 110

(2)

where

 (3)

We define the quadratic Lyapunov function

 where . (4)

1.2 Problem statement

If we can find a such that , then the queue occu-

pancy has a downward drift and the switch is said to bestable.

1.3 Solution

As there is no systematic method for finding we must guess its form. We assume that is

symmetric, i.e. . Further, we guess that if the switch is stable under all admissible

offered loads, then it will be marginally stable when and . i.e.

. (5)

This leads us to the guess

. (6)

This matrix leads to a stable switch under the following conditions.

L1 1, n 1+() L1 1, n() 1–[] + η1+=

L1 2, n 1+() L1 2, n() η2+=

L2 1, n 1+() L2 1, n() η3+= 





ConfigurationA

L1 1, n 1+() L1 1, n() η1+=

L1 2, n 1+() L1 2, n() 1–[] + η2+=

L2 1, n 1+() L2 1, n() 1–[] + η3+= 





ConfigurationB

ηi

1, if an arrival occurs at queue i, w.p.λi

0, else



=

V L n()() L n()TQL n()= 0 ,≥ Q qij[] qij 0≥,=

Q E V L n 1+()() V L n()()– L n()[] 0<

Q Q

qij[] qji[]=

λ2 λ3 1= = λ1 0=

E V L n 1+()() V L n()()– L n() λ2 λ3 1= = λ1 0=, ,[] 0=

Q a
4 2 2

2 1 1

2 1 1

, for any integer,a=

Q

APPENDIX 3 Stability of 2x2 Switch 111

Conditioned on :

 (7)

 (8)

Similarly, conditioned on either or :

 (9)

whereas .

Finally, conditioned on :

 (10)

whereas .

1.4 Stable Algorithms

The value of above enables us to define the following algorithm that will be stable under all

admissible traffic with i.i.d. arrivals for a 2x2 switch with three active flows:

1. If , set crossbar to configurationB.

2. Else, if either or , set crossbar to configurationA.

3. Else, set crossbar configuration to eitherA or B.

2 Relative Queue Sizes (Theorem 4.3)

In this section we prove that if or any arrival process to a 2x2 switch, if for somen

 (11)

L1 1, n() 0 L1 2, n(), 0> > L2 1, n() 0>,

E V L n 1+()() V L n()()– L n() A,[] 2– 2λ1 λ2 λ3+ + +()=

2– 2λ1 λ2 λ3 4L1 1, n() 2L1 2, n() 2L2 1, n()+ + + + + +()

0<

E V L n 1+()() V L n()()– L n() B,[] 2– 2λ1 λ2 λ3+ + +()=

2– 2λ1 λ2 λ3 4L1 1, n() 2L1 2, n() 2L2 1, n()+ + + + + +()

0<

L1 2, n() 0= L2 1, n() 0=

E V L n 1+()() V L n()()– L n() A,[] 0<

E V L n 1+()() V L n()()– L n() B,[] maybe greater than 0

L1 1, n() 0=

E V L n 1+()() V L n()()– L n() B,[] 0<

E V L n 1+()() V L n()()– L n() A,[] > 0

Q

L1 1, n() 0=

L1 2, n() 0= L2 1, n() 0=

L1 1, n() L2 2, n()+{ } L1 2, n() L2 1, n()+{ }– 3≤

APPENDIX 3 Stability of 2x2 Switch 112

then for all

. (12)

For convenience, define

 (13)

and assume without loss of generality that , i.e.

 (14)

for some .

Finally, define

 (15)

. (16)

Theorem A3.1:All possible single step increases in are shown in Figure 3.1.

Proof:

n′ n≥

L1 1, n′() L2 2, n′()+{ } L1 2, n′() L2 1, n′()+{ }– 4≤

LA n() L1 1, n() L2 2, n() ,+= LB n() L1 2, n() L2 1, n()+=

LA n() LB n()≥

LA n() LB n() D n()+=

D n() 0≥

LM n() max LA n() LB n(),()=

Lm n()
LA n() if LM n() LB n()=

LB n() if LM n() LA n()=



=

D n()

FIGURE A3.1 All possible single-step increases in . Arrows marked: require two arrivals, which
means that both queues in are non-empty in the next cell time.

D n()
LM n()

1 32 4

0

APPENDIX 3 Stability of 2x2 Switch 113

Case (i): . First we consider all possible values of when

, i.e. . We shall assume, without loss of generality that the two

queues that contribute to are served at timen.

At most two cells can arrive to the switch in a cell time, which means that

 (17)

and that at most two cells can depart from the switch in a cell time, which means that

. (18)

Note that there can only be 0 departures if and only 1 departure if either

 or .

From Eq. 17 and Eq. 18 we find the following possible increases when .

 (19)

Note that if and only if two arrivals occur. This means that both queues that

contribute to are non-empty.

Case (ii)-(iv): . By enumerating all transitions, as for , we
find the transitions from 1, 2, 3 in Figure 3.1.

Case (v): . In cases (i)-(iv) we found that transitions into require
that two arrivals occur and that both of the queues that contribute to when

 are non-empty. As a result, the matching at timen serves two queues, hence

D n() 0= D n 1+()

D n() 0= LA n() LB n()=

LA n()

LB n 1+() LB n()

0 : 0 arrivals

1 : 1 arrival

2 : 2 arrivals




+=

LA n 1+() LA n()

2 : (2 dep. and 0 arr.),–

1 : (2 dep. and 1 arr.), or (1 dep and 0 arr.)–

0 : (2 dep. and 2 arr.), or (1 dep and 1 arr.)

1 : (1 dep. and 2 arr.), or (0 dep and 1 arr.)






+=

LA n() 0=

L1 1, n() 0= L2 2, n() 0=

D n() D n() 0=

D n 1+()

1 : LA n() LA n() 1–→() LB n() LB n()→(),

2 : LA n() LA n() 1–→() LB n() LB n() 1+→(),

3 : LA n() LA n() 2–→() LB n() LB n() 1+→(),

4 : LA n() LA n() 2–→() LB n() LB n() 2+→(),







=

D n() 4=

LM n 1+()

D n() 1 2 3, ,= D n() 0=

D n() 4= D n() 4=
LM n()

D n() 4=

APPENDIX 3 Stability of 2x2 Switch 114

. (20)

is not served and so cannot decrease, therefore,

. (21)

Finally,

 (22)

❒.

The transitions in Figure 3.1 indicate

1. For any queue occupancy such that , the next state is bounded by
.

2. If , then both queues in are non-empty.

3. If both queues in are non-empty and , then .

Hence, if for somen, , then for all , which proves the theorem.

LM n 1+() LM n()≤

Lm n()

Lm n 1+() Lm n()≥

D n 1+() 4≤

D n() 3≤
D n 1+() 4≤

D n 1+() 4= LM n 1+()

LM n() D n() 4= D n 1+() 4≤

D n() 3≤ n′ n≥ D n′() 4≤

115

APPENDIX 4

Stability of NxN Switch

with i.i.d. Arrivals

1 Definitions

In this appendix we use the following definitions for anNxN switch:

1. The state vector, representing the occupancy of each queue at timen:

. (1)

2. The (constant) arrival rate matrix:

 (2)

and associated rate vector:

. (3)

3. The arrival matrix, representing the sequence of arrivals into each queue:

 (4)

and associated arrival vector:

L n() L1 1, n() … L1 N, n() … L, N 1, n() … LN N, n(), , , , ,()≡

Λ λi j,[] where: λi j,
i 1=

N

∑ 1 λi j,
j 1=

N

∑ 1 λi j, 0≥,≤,≤,≡

λ λ1 1, … λ1 N, … λ, N 1, … λN N,, , , , ,()≡

A n() Ai j, n()[] where: Ai j, n()
1 if arrival occurs atQ i j,() at timen

0 else
{≡,≡

APPENDIX 4 Stability of NxN Switch with i.i.d. Arrivals 116

. (5)

4. The service matrix, indicating which queues are served at timen:

 (6)

and , the set of service matrices.

Note that:

and hence is apermutation matrix.

We define the associated service vector:

, (7)

hence .

5. Theapproximate next-state vector:

, (8)

which approximates the exact next-state of each queue

. (9)

2 Main Theorem

Theorem A4.1:An NxN switch is stable for the LQF algorithm under i.i.d. arrivals.

3 Proof

Before proving this theorem, we first prove the following theorems.

A n() A1 1, n() … A1 N, n() … A, N 1, n() … AN N, n(), , , , ,()≡

S n() Si j, n()[] where: Si j, n()
1 if Q i j,() is served at timen

0 else
{=,≡

S n() S∈

Si j, n()

i 1=

N

∑ Si j, n()

j 1=

N

∑ 1= =

S n() S∈

S n() S1 1, n() … S1 N, n() … S, N 1, n() … SN N, n(), , , , ,()≡

S n() 2 N=

L̃ n 1+() L n() S n()– A n()+≡

Li j, n 1+() Li j, n() Si j, n()–[] +
Ai j, n()+=

APPENDIX 4 Stability of NxN Switch with i.i.d. Arrivals 117

Theorem A4.2: The doubly stochastic matrices, , form a convex set, , with the set of

extreme points equal to permutation matrices, .

Proof: The set is clearly convex: for all rate matrices and for every real num-

ber , the point . A permutation matrix is doubly stochastic

and is therefore a member of the set. Furthermore, there are no two distinct matrices

 such that , for real . Hence, a permutation

matrix is an extreme point of .❒

Theorem A4.3: , where , the

service matrix selected by the LQF algorithm to maximize .

Proof: Consider the linear programming problem:

 (10)

which has a solution equal to an extreme point of the convex set, . Hence,

 (11)

and so .❒

Theorem A4.4: .

Proof:

 (12)

where . because is a real vector, and because

.

Λ C

S

C Λ1 Λ2, C∈

α 0 α 1< <, αΛ1 1 α–() Λ2+ C∈ S

C

Λ1 Λ2, C∈ αΛ1 1 α–() Λ2+ S= α 0 α 1< <,

C

LT n()λ S* n()– 0 L n() λ,()∀,≤ S* n() max LT n()S n()()=

LT n()S n()

max LT n()λ()

s.t. λi j,
i 1=

N

∑ 1 λi j,
j 1=

N

∑ 1 λi j, 0≥,≤,≤

C

max LT n()λ() max LT n()S n()()≤

LT n()λ max LT n()S n()()– 0≤

E L̃T n 1+()L̃ n 1+() LT n()L n() L n()–[] 2N λ∀,≤

L̃T n 1+()L̃ n 1+() LT n()L n()–

L n() S n()– A n()+() T L n() S n()– A n()+() LT n()L n()–=

2LT n() A n() S n()–() S n() A n()–() T S n() A n()–()+=

2LT n() A n() S n()–() k,+=

0 k 2N≤ ≤ k 0≥ S n() A n()– k 2N≤

S n() A n()– 2 2N≤

APPENDIX 4 Stability of NxN Switch with i.i.d. Arrivals 118

Taking the expected value:

 (13)

From Theorem 4.4 we know that , proving the theorem.❒

Theorem A4.5: , ,

, where is any rate vector such that .

Proof:

 (14)

where is the angle between and .

We now show that for some whenever . First, we show that .

We do this by contradiction: suppose that , i.e. and are orthogonal. This can

only occur if , or if for some , both and , which is not possible:

for arrivals to have occurred at queue , must be greater than zero. Therefore,

unless . Now we show that is bounded away from zero, i.e. that for some

. Because wherever , and because ,

, (15)

where and . Also,

, (16)

and so is bounded by

 (17)

E L̃T n 1+()L̃ n 1+() LT n()L n()– L n()[] E 2LT n() A n() S n()–()[] 2N+≤

2LT n() λ S* n()–() 2N.+=

2LT n() λ S* n()–() 0≤

E L̃T n 1+()L̃ n 1+() LT n()L n()– L n()[] ε L n()– 2N+≤ ε 0>

λ 1 β–() λm≤ 0 β 1< <,∀ λm λm
2 N=

LT n() λ S* n()–() LT n() λm S* n()–{ } LT n() βλm()–≤

0 β L n() λm θcos⋅–≤

θ L n() λm

θcos δ> δ 0> L n() 0≠ θcos 0>

θcos 0= L n() λm

L n() 0= i j, λi j, 0= Li j, n() 0>

Q i j,() λi j, θcos 0>

L n() 0= θcos θcos δ>

δ 0> λi j, 0> Li j, n() 0> λ N≤

θcos
LT n()λ
L n() λ

-----------------------=
Lmax n()λmin

L n() N
-------------------------------≥

λmin min λi j, 1 i j N≤,≤,()= Lmax n() max Li j, n() 1 i j N≤,≤,()=

L n() N2Lmax
2 n() 1 2/≤ NLmax n()=

θcos

θcos
λmin

N N
------------≥

APPENDIX 4 Stability of NxN Switch with i.i.d. Arrivals 119

Therefore

. ❒ (18)

Theorem A4.6: ,

.

Proof:

, (19)

therefore

, (20)

and so

. (21)

Using Theorem 4.5 this concludes the proof.❒

Theorem A4.7: There exists a s.t. ,

where .

Proof: and in Theorem 4.6.❒

We are now ready to prove the main theorem.

Proof of Main Theorem: in Theorem 4.7 is a quadratic Lyapunov function and,

according to the argument of Kumar and Meyn [27], it follows that the switch is stable.❒

E L̃T n 1+()L̃ n 1+() LT n()L n()– L n()[]
βλmin

N
--------------- L n()– 2N+≤

E LT n 1+()L n 1+() LT n()L n()– L n()[] ε L n()– N2 2N+ +≤ ε 0>

λ 1 β–() λm n()≤ 0 β 1< <,∀

Li j, n 1+() L̃i j, n 1+()
1 if Li j, n() 0 Si j, n(), 1= =

0 else



+=

LT n 1+()L n 1+() L̃T n 1+()L̃ n 1+()– N2≤

E LT n 1+()L n 1+() LT n()L n()– L n()[] E L̃T n 1+()L̃ n 1+() LT n()L n() L n()–[] N2+≤

V L n()() E V L n 1+()() V L n()() L n()–[] ε L n()– k+≤

k ε, 0>

V L n()() LT n()L n()= k N2 2N+=

V L n()()

