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Abstract

Scheduling Algorithms for Input-Queued Cell Switches

by
Nicholas William McKeown

Doctor of Philosophy in Engineering-Electrical Engineering and Computer Sciences

University of California at Berkeley

Professor Jean Walrand, Chair

The algorithms described in this thesis are designed to schedule cells in a very high-speed,
parallel, input-queued crossbar switch. We present several novel scheduling algorithms that we
have devised, each aims to match the set of inputs of an input-queued switch to the set of outputs
more efficiently, fairly and quickly than existing techniques.

In Chapter 2 we present the simplest and fastest of these algorithms: SLIP — a parallel algo-
rithm that uses rotating priority (“round-robin”) arbitration. SLIP is simple: it is readily imple-
mented in hardware and can operate at high speed. SLIP has high performance: for uniform i.i.d.
Bernoulli arrivals, SLIP is stable for any admissible load, because the arbiters desgirtohro-
nize We present analytical results to model this behavior. However, SLIP is not always stable and
is not always monotonic: adding more traffic can actually make the algorithm operate more effi-
ciently. We present an approximate analytical model of this behavior. SLIP prevents starvation: all
contending inputs are eventually served. We present simulation results, indicating SLIP’s perfor-
mance. We argue that SLIP can be readily implemented for a 32x32 switch on a single chip.

In Chapter 3 we presenSLIP, an iterative algorithm that improves upon SLIP by converging
on a maximal size match. The performance8EIP improves with up to logN iterations. We
show that although it has a longer running time than SLIRSAHP scheduler is little more com-
plex to implement.

In Chapter 4 we describe maximum or maximaightmatching algorithms based on the
occupancy of queues, or waiting times of cells. These algorithms are stable over a wider range of
traffic loads. We describe two algorithriengest queue firgLQF) andoldest cell firsf OCF) and
consider their performance. We prove that LQF, although too complex to implement in hardware,
is stable under all admissible i.i.d. offered loads. We consider two implementable, iterative algo-
rithmsi-LQF andi-OCF which converge on a maximal weight matching. Finally, we present two
interesting implementations of the Gale-Shapley algorithm, designed to sobltalilemarriage
problem
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CHAPTER 1

Introduction

1 Problem Statement

Consider the “input-queued cell switch” in Figure 1.1 conneatirigputs ton outputs. The
arrival proces\(t) at inputi, 1<i<m, is a discrete-time process of fixed sized packets, called
cells® At the beginning of each time slot, either zero or one cells arrive at eachBagbtcell
contains an identifier that indicates which outpukj<n, it is destined for. When a cell destined
for outputj arrives at input it is placed in the FIFO quew(i,j) which has occupandy; ;(t). We

shall define the arrival proceag;(t) as the process of arrivals at inpér outputj at rateh; ;, and

g
the set of arrival procességt) = {A(t); 1<jsm}. A(t) is considere@dmissiblef no input or out-

put is oversubscribed, i.i)\i i < 1, Z)\i i < 1 , otherwise iinigdmissible
I ]

The FIFO queues are served as follows. A scheduling algorithm selects a conflict-free match
M between the set of inputs and outputs such that each input is connected to at most one output
and each output is connected to at most one input. At the end of the time slot, ifi;npai-
nected to output one cell is removed froi@(i,j) and sent to output Clearly, the departure pro-

cess from outpuf, D;(t), ratey; is also a discrete-time process with either zero or one cell

1. Unless otherwise stated, we will assume M@} is stationary and ergodic.
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Figure 1.1 Components of an Input-Queued Cell-Switch.

departing from each output at the end of each time slot. We shall define the departure process

Di (1), ratey; j, as the process of departures from ouitpli&t were received from input

To find a matching M, the scheduling algorithm solves a bipartite graph matching problem. An

example of a bipartite graph is shown in Figure 1.2.

All of the scheduling algorithms described in this thesis attempt to match the set of inputs I, of
an input-queued switch, to the set of outputs J. For our application, we will assume that
[Il = m=1]J =n =N, where N is the number of ports. In each algorithm, if the Q€L is
non-emptyL;;(t) > 0 and there is an edge in the graph G between iirgmat outpuf. The mean-
ing of the weights depend on the algorithm. For example, in some algorithms the weight is always
equal to one, indicating whether the queue is empty or non-empty. In other algorithms, the weight

w;j may be integer-valued, equalling for examiplgt).

There are a number of properties that we desire for all scheduling algorithms:

« Efficiency —An efficient algorithm is one that serves as many input-queues as possible
in each match. In general, the maximum matching problem does not have a solution that
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Graph, G Matching, M
Inputs, | Outputs, J Inputs, | Outputs, J

a) Example of G for0= m and [JC= n. b) Example of matching M on G.

Figure 1.2 Define G = [V,E] as an undirected graph connecting the set of vertices V with the set of edges E.
The edge connecting vertices1<ism andj, 1<j<n has an associated weight denoteggl. Graph G is
bipartite if the set of inputs | = {i:<i<m} and outputs J =i{ 1<j<n} partition V such that every edge has

one end in | and one end in J. Matching M on G is any subset of E such that no two edges in M have a

common vertex. Anaximum matching algorithms one that finds the matching.\g,with the maximum
total size or total weight

can be calculated quickly in hardware, and so each of the algorithms that we describe
finds a sub-maximum matchdyf, where:|Mg [ <M | .

* Stability— For a given admissible traffic pattern, we define an algorithstabteif the
expected occupancy of every input queygj) is finite, i.e.E[Liyj ()] <o .Fora
given algorithm, we call a stationary traffic patteustainabléf it does not cause the
switch to become unstable.

» No Starvation— We shall describe a non-empty input-queustavedif, for a given
traffic pattern and scheduling algorithm, it remains unserved indefinitely.

» Fast— To achieve the highest bandwidth switch, it is important that the scheduling

algorithm does not become the performance bottleneck. The algorithm should therefore
find a match as quickly as possible.

» Simple to implement H-the algorithm is to be fast in practice, it must be implemented

in special-purpose hardware. The implementation complexity includes the amount of
state that the scheduler must maintain, the amount of logic required to make a decision
based on the state, and the amount of communication required to update the state at the
beginning and end of each cell time.
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2 Motivation

The scheduling algorithms described in this thesis are applicable to all input-queued switches.
However, the work was motivated by a single goal: to find a simple algorithm that can schedule
cells in a high-speed, parallel input-queued crossbar switch. We may partition such a switch into
two main components: the datapath and the scheduler. Designing a high-bandwidth datapath is
straightforward; it is the scheduling algorithm that is complex. To illustrate this point we begin
with the example of an extremely high-bandwidth datapath that we have devised. We will then
describe how this datapath can be controlled by a central scheduler. We then discuss the problem

of scheduling cells for such a datapath.

2.1 Datapath for an Input-Queued Switch

An example of a high-speed datapath is shown in Figure 1.3. This switch is shown to illustrate
that it is feasible to build a small switch with extremely high aggregate bandwidth in current
CMOS technology. Figure 1.3(a) shows the general structure of the switch: switch port cards con-
nect to a central switching hub; when cells arrive at the switch port card, they are buffered while
waiting to be transferred through the hub. As shown in Figure 1.3(b), the switching hub is com-
posed of a stack of identical bit-slices and for a small number of ports (for example, 32 ports or
less) is readily implemented using a crossbar switch. Plan and side elevations of each bit-slice are
shown in detail in Figure 1.3(c). Each bit-slice is a single layer printed circuit board containing a
1-bit NxN switching chip. The switching chip is connected to every port card via a two-bit connec-

tor: one bit to receive from and one bit to transmit to the port card.

The main advantages of this switch architecture are:

» The bit-slice is extremely simple. No leads need to cross, reducing crosstalk and allow-
ing the slice to be constructed from a single layer printed circuit board.

» The lead lengths connecting each port card to the central switch are all of identical and
minimum length. This reduces skew and the effect of reflections, enabling high data rates
and means that each bit-slice can be small. For example, a slice for a 32-port switch could
be just 2 inches in diameter.

» By switching multiple bits in parallel, extremely high aggregate bandwidths are achiev-
able. For example, for a 32-port switch with 32 bit-slices and a clock-rate of 100MHz for
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A

a) The switch consists of a central, vertical hub. b) The central hub consists of multiple,

Each interface card connects radially into the identical bit-slices stacked vertically. This
hub. This example shows a 4-port switch. example shows a stack of 4 bit-slices.
e [0 6 | -

d) Detail of construction of bit-slice. This ex-

¢) Each bit-slice contains a single switch bit-
ample only shows a single edge connector.

slice chip, a 2-bit connector to each port card
(one bit for each direction). This example
shows a single 4x4 bit chip.

Figure 1.3 The datapath for a parallel, bit-sliced input-queued switch.

each switching chip (easily achievable in current CMOS technology), an aggregate band-
width of 100Ghps is achievable. In the extreme, if the parallel path is as wide as a single
ATM cell (424 bits), a 32 port switch operating at 100MHz would have an aggregate
bandwidth in excess of 1 terabit per second!

2.2 Controlling the Datapath
It is necessary for the datapath to be configured at the beginning of each cell time. In this

design, we assume that a centralized scheduler examines the state of the input queues and selects a

conflict-free match between inputs and outputs. This configuration is then loaded into all bit-slices

in parallel, as shown in Figure 1.4.
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@ -

a) A centralized scheduler deter- b) Each slice is connected to the
mines the configuration of the slice above and below so that the
crossbar and loads it vertically switch configuration can be
through the hub. loaded in parallel to all slices.

Figure 1.4 Extension of datapath to control configuration.

To
crossbar

Control signals
from each port
to scheduler

Control signals
from scheduler
NlogN to each por

Emptyd Non}empty
] 1flogN
1, ;

Non-emptyﬁ Empty

Choice

State of
Input Queues

Figure 1.5 Connections to and from each port and a centralized scheduler.

In Figure 1.5 we consider the number of connections to and from each port and the centralized
scheduler, assuming that the scheduler maintarssae bits indicating whether each input queue
is empty or non-empty. At the beginning of each cell time, each input port may receive at most one
new arrival. If as a result of the arrival input qu€)&j) changes from empty to non-empty, then

inputi must notify the scheduler, passing the vgaluemay do this witHogN bits, and one extra
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bit to indicate that the value is valid. At the end of the arbitration time the scheduler must notify
each input at most one output that it may transmit a cell to, once again requirlogN bits.
The scheduling decision may resultQfi,j) changing from non-empty to empty, requiring input
to indicate this to the scheduler. Because the scheduler knows whichjouistacheduled, input

i requires only 1 bit to indicate this information.

The scheduler must also indicate its decision to the switch datapath. It may do this by notify-
ing each output which input it is connected to, requiring a total of NlogN Bite. crossbar loads

this configuration by turning on or off each switching element.

3 Background

3.1 Input vs. Output Queueing

The long-standing view has been that input-queued switches are impractical because of poor
performance. If FIFO queues are used to queue cells at each input, only the first cell in each queue
is eligible to be forwarded. As a result, FIFO input queues suffer iead of ling(HOL) block-
ing; if the cell at the front of the queue is blocked, other cells in the queue cannot be forwarded to
other unused inputs. It is well known that for an input-queued switch with Bernoulli i.i.d. arrivals
with destinations uniformly distributed over all outputs the maximum achievable throughput is
limited to just 58% when the number of ports is large [22]. For periodic traffic, HOL blocking can
lead to even worse performance [33] and as a result the standard approach has been to abandon

input queueing and instead use output queueing.

With output queueing the bandwidth of the internal interconnect is increased, allowing multi-
ple cells to be forwarded at the same time to the same output, and queued there for transmission on
the output link. The main advantage of output queueing is that all cells are delayed by a fixed
amount making it possible to control delay through the switch. This is why schemes that schedule

cells to provide absolute or statistical performance guarantees assume output queueing [8], [10],

1. Alternatively, the scheduler may notify the datapath for each input which output it is connected to. For unicast traffic
this would be sufficient and equivalent. However, if the datapath is used for multicast traffic, an input may be connected
to multiple outputs requiring a list of outputs to configure an input. Because an output can still receive a cell from at most
one input, it is still sufficient to indicate to each output which input is connected to.
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Input Cell Buffers Switch Fabric
Tail|_, ««—Head
Arriving [ "E
Cells N g
Tall Head >
P [ -5y
>
Input 1
| Input 2
Input N

Figure 1.6 Head of line blocking can be eliminated by using a separate queue for each output at each input.

[29], [30], [31], [44], [45]. This is not generally possible with input-queued switches due to varia-
tions in delay caused by contention for the switching fabric and queueing at the input.The main
disadvantage of output queueing is that for a N-port switch, the internal interconnect and output
gueues must operate at N times the line rate. In applications where the number of ports is large or

the line rate is high, this makes output queueing impractical.

3.2 Overcoming Head-of-Line Blocking

Our work is motivated by the desire to achieve the highest data rate for a given technology.
This forces us to consider only input-queued switches and to try and overcome the limitations of
HOL blocking. Many technigues have been suggested for reducing HOL blocking, for example by
considering the first K cells in the FIFO queue, where K>1 [6], [19], [23]. Although these schemes
can improve throughput, they are highly sensitive to traffic arrival patterns and perform no better

than regular FIFO queueing when the traffic is bursty.

But HOL blocking can be eliminated entirely by using a simple buffering strategy at each
input port. Rather than maintain a single FIFO queue for all cells, each input maintains a separate

gueue for each output [3], [24], [40], as shown in Figure 1.6. HOL blocking is eliminated because
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a cell cannot be held up by a cell queued ahead of it that is destined for a different output. This
implementation is slightly more complex, requiring N FIFOs to be maintained by each input
buffer. But no additional speedup is required: at most one cell can arrive and depart from each

input in a cell time.

3.3 Previous Scheduling Work

In this section we summarize a selection of scheduling algorithms for input-queued switches
described in the literature. All of these algorithms are for switches that avoid HOL blocking using
the scheme described above. Each algorithm attempts to find either a maskm&umatching, or

attempts to schedule a cell on arrival at the earliest possible time in the future.

3.3.1 Maximum Size Matching

The maximum size matching for a bipartite graph can be found by solving an equivalent net-
work flow problem [41]. We will call this algorithmmaxsize There exist many algorithms for
solving these problems, the most efficient currently known converg@$ritf 2 time and is
described in [17f.The problem with this algorithm is that although it is guaranteed to find a max-

imum match, for our application it is too complex to implement and takes too long to complete.

It is important to note that a maximwsizematching is not necessarily desirable. First, under
admissibleraffic it can lead to instability and unfairness, particularly for non-uniform traffic pat-
terns. An example of this behavior for a 2x2 switch is shown in Figure 1.7(a). Arrivals to the
switch are i.i.d. Bernoulli arrivals and the performance was obtained using simulation. Even
though the traffic is admissible, it cannot be sustained by the maximum size matching afyjorithm.
Second, undenadmissibletraffic, the maximum size matching algorithm can leastéovation
An example of this behavior is shown in Figure 1.7(b). It is clear that because all three queues are
permanently occupied, the algorithm will always select the “cross” traffic: input 1 to output 2 and

input 2 to output 1.

1. In some literature, the maximwizematching is called the maximu@ardinality matching or just the maximum
bipartite matching.

2. This algorithm is equivalent to Dinic’s algorithm [9].
3. Later, we will look at particular values under which the maximum size matching algorithm is unstable.



CHAPTER 1 Introduction 10

>
1]

0.48 My 1 = 0.43

)\2, 1 = 0.44 “2, 1 = 0.44

a) Even under aadmissiblevorkload of b) Under arinadmissiblewvorkload, the -
Bernoulli arrivals, the maximum size match maximum size match will always serve just
can be unstable. two queuesstarvingthe flow from input 1

to output 1.

Figure 1.7 Example ahstability using a maximum size matching algorithm for a 2x2 switch with 3 offered
flows.

3.3.2 Neural Network Algorithms

Hopfield neural networks have also been used to approximate maximum size matchings for
bipartite graphs [2], [5], [34], [42]. For an N-port switch, the neural network compr%eeu}d
rons; each neuron is implemented by an analog amplifier and RC circuit. At the beginning of each
cell time, the neural net is loaded with the state matrix, ¥ F\Wherey;; = 1 if Li'j (t) >0, else
vij = 0. For example, in [2] the circuit is designed to minimize the following quadratic energy

function [18]:

N N N N N N N N
A B C
EE32 2 2 itz ) 2 vtz ) (N7 (1)
i=1j=1 II:¢j1 jzli:lllz;:tT i=1j=1

A, B, Care positive parameters selected by simulation to ensure convergence of the network.
The first term in Equation 1.1 is minimized when a solution has at most a single non-zero element
per row and ensures that at most one cell is chosen per input. Likewise, the second term is mini-
mized when a solution has at most a single non-zero element per column and ensures that at most
one cell is chosen per output. The third term is minimized when the number of non-zero elements

in the solution is maximized.
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The Hopfield neural network will usually, but not always, converge on a maximum size match.
Occasionally, the network will find a suboptimal match, settling on a local minimum of the energy
function. Our results from a simulation of [2] suggest that for a 16x16 switch the match never dif-
fers from the maximum size match by more than one connection and that the algorithm converges
rapidly. We will call this algorithmmeural Results from the simulation of an almost identical
scheme, designed inugh CMOS, reported a maximum convergence time of 200ns when N=8
[42]. The main problem with this approach is that it is analog, requiring careful design of amplifi-
ers and RC circuits to ensure that the network will converge and that it will not favor some connec-
tions over others. However, although we shall not consider this method further in this thesis, we

believe that this method is promising for prioritized and multicast traffic.

3.3.3 Scheduling into the Future

Several schemes have been proposed in which the time that a cell will be transmitted across
the switch is decided when the cell arrives [1], [24], [35], [37], [38], [39]. We will describe two of

these schemes, which are representative of the others.

The first scheme described by Obara in [37], consists of two phases: request and arbitration.
We will call this schemé&uture Q The scheduler for outpjitonsists of a counter; flepresenting
the next time in the future that this output is not scheduled. When the output receives a request at
timet, it returns the current valug Tto the requesting input and incrementbylone. This
ensures that the output is reserved at tinferTthe input. The input buffers the cell in an ordered
list of departure times, tagging the cell for departure at timéidwever, the input may have
already received a valug ¥ 'I'J j#k, from some other outplitat some time'< t. In this case, the
input must attempt to schedule this cell again in the next cell time. The advantage of this scheme is
that the implementation complexity of the output scheduler is low, requiring only a counter that
can be incremented by up to N per cell time. As described in [37], it is straightforward to pipeline

this scheme for very high-bandwidth or large switches.

But even for Bernoulli i.i.d. arrivals with destinations uniformly distributed over outputs, this

scheme achieves a throughput of just 65%, only slightly higher than for FIFO queueing. This is
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because under high load, many reservations made by the output schedulers are not used by any

input.

In an attempt to improve the throughput of this scheme, the authors in [24], propose a second
scheme which we will caFuture 1 An enhancement dfuture Q this scheme returns unusable
reservation times to the outputs for recycling. Each output maintains a list of recycled time slots.
When it receives a request, an output first considers its list of recycled time slots; if there is a time
slot on the list that has not been previously granted to the requesting input, the slot is returned. If
there is no suitable slot time on the list, the output returns the value of a cqueserefore and

increments the counter by one.

Under simulation, the authors find a dramatic increase in throughput; with Bernoulli i.i.d.
arrivals, a throughput in excess of 95% can be achieved even if the recycling list is limited to just
one cell. But the scheme is difficult to implement in hardware, requiring counters and lists that can

be accessed by up to N requesting inputs in parallel.

3.3.4 Parallel Iterative Matching

Parallel Iterative Matching (PIM) was developed by DEC Systems Research Center for the
16-port, 1Gbps AN2 switch [3]. Because it forms the basis of the novel algorithms described later,

we will describe the scheme in detail and consider some of its performance characteristics.

PIM usesrandomness$o avoid starvation, and to reduce the number of iterations needed to
converge on a maximal matching. PIM attempts to quickly converge on a conflict-free match in
multiple iterations, where each iteration consists of three steps. All inputs and outputs are initially
unmatched and only those inputs and outputs not matched at the end of one iteration are eligible
for matching in the next. The three steps of each iteration operate in parallel on each output and
input and are shown in Figure 1.8. The steps are:

Step 1. RequestEach unmatched input sends a requestdoyoutput for which it
has a queued cell.

Step 2. Grant If an unmatched output receives any requests, it grants to oaa-by
domlyselecting a request uniformly over all requests.
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Input 1
L(1,1) =1
L(1,2) =4
Input 3 [ ) k=2 requests
L(3,2) =2
L(3.4) =1 ®
Input 4
L(4,4)=3

a) Step 1RequestEach input makes a request to
each output for which it has a cell. This is shown
here as a graph with all weightg,; = 1.

os—0 o—»®
= rants
9=29 ° °
[ ¢6— >
b) Step 2Grant Each output selects aninput  c) Step 3 Accept Each input selects an out-
uniformly among those that requested it. In put uniformly among those that granted to it.

this example, inputs 1 and 3 both requested In this example, outputs 2 and 4 both granted
output 2. Output 2 chose to grant to input 3. to input 3. Input 3 chose to accept output 2.

Figure 1.8 An example of the three steps that make up one iteration of the PIM scheduling algorithm [3]. In
this example, the first iteration does not match input 4 to output 4, even though it does not conflict with other
connections. This connection would be made in the second iteration.

Step 3. Accept If an input receives a grant, it accepts one by selecting an output among
those that granted to this output.
By considering only unmatched inputs and outputs, each iteration only considers connections

not made by earlier iterations.

Note that in step (2) above the independent output schedahelsmlyselect a request among
contending requests. This has three effects: first the authors in [3] show that each iteration will
match or eliminate on average at Ie%st of the remaining possible connections and thus the algo-
rithm will converge to a maximal match @(logN) iterations. Second, it ensures that all requests
will eventually be granted. As a result, no input queue is starved. Third, it means that no memory

or state is used to keep track of how recently a connection was made in the past. At the beginning
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Figure 1.9 Example of unfairness for PIM under heavy, inadmissible load with more than one iterations.

of each cell time, the match begins over, independently of the matches that were made in previous
cell times. Not only does this simplify our understanding of the algorithm, but it also makes analy-
sis of the performance straightforward: there is no time-varying state to consider, except for the

occupancy of the input queues.

But using randomness comes with its problems. First, it is difficult and expensive to imple-
ment at high speed: each scheduler must make a random selection among the members of a vary-
ing set. Second, for unsustainable traffic it can lead to unfairness between connections. An extreme
example of unfairness for a 2x2 switch under an inadmissible load is shown in Figure 1.9. We will
see examples later for which PIM and some other algorithms are unfair for admissible but unsus-
tainable traffic. Finally, PIM does not perform well for a single iteration: it limits the throughput to
just 63%, only slightly higher than for a FIFO switch. This is because the probability that an input
will remain ungranted %NT_l%N , hence as N increases, the throughput temelséte 63%

Although the algorithm will often converge to a good match after several iterations, the time to
converge may affect the rate at which the switch can operate. We would prefer an algorithm that

performs well with just a single iteration.

3.4 Simple Comparison of Previous Techniques

We conclude this chapter with a simple comparison of the performance under simdation

the algorithms described above. We present results for each algorithm when the arrival process

1. All of the simulation results presented in this there were obtained using a slotted-time ATM simulator, written in C.
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Figure 1.10 Comparison of latency as a function of offered load for several scheduling algorithms, using
simulation. 16x16 switch, arrivals at each input are Bernoulli i.i.d. trials for each cell time. Cell destinations
are uniformly distributed over all outputs. All arrival processes are independent.

A(t) at each input consists of independent Bernoulli trials. Figure 1.10 indicates the latency as a

function of offered load for each algorithm as well as for FIFO and pure output queueing.

The worst performance is given by FIFO queueing, with the input queues becoming
unbounded for an offered load greater than 604t the other extreme, output queueing repre-

sents the best performance and is stable for an offered load arbitrarily close to 100%.

1. As shown in [23], the throughput tends to 58% from above, as N tends to infinity.
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Among the algorithms that attempt to achieve a maximum size match, the highest throughput
is achieved unsurprisingly by tmeaxsizé algorithm. It is interesting to note that under high
offered load, the performance wfaxsizds indistinguishable from output queueing. This is
because the input-queues are almost invariably occupied, resulting in a perfect match between
inputs and outputs on every iteration. At the other extreme, PIM 1 (PIM with a single iteration)
performs poorly, as expected. But with just four iterations, PIM 4 is a significant improvement

remaining stable with an offered load in excess of 95%.

Future Operforms slightly better than FIFO queueing saturating at just 65%, while the recy-

cling of Future 1(with a list size of just 1) enables it to sustain an offered load in excess of 95%.

4 Qutline of Thesis

Now that we have described the main features and limitations of existing scheduling algo-
rithms we will, in the next three chapters, present several novel scheduling algorithms that we
have devised. It is the objective of each algorithm to match the set of inputs of an input-queued

switch to the set of outputs more efficiently, fairly and quickly than existing techniques.

Chapter 2 presents the simplest and fastest of these algorithms: SLIP. The SLIP algorithm is
similar to PIM, but uses rotating priority (“round-robin”) arbitration to schedule each active input
and output in turn. The main characteristic of SLIP is its simplicity: it is readily implemented in
hardware and can operate at high speed. For uniform i.i.d. Bernoulli arrivals, SLIP has the appeal-
ing property that it is stable for any admissible load. We explain how this property arises from the
tendency of the arbiters tiesynchronizevith respect to each other, and present some analytical
results to model this behavior. SLIP, however, is not stable for all admissible arrival processes.
Surprisingly, we also find that its behavior is not always monotonic: under specific conditions,
adding more traffic can actually make the algorithm operate more efficiently. We examine this at
length, presenting an approximate analytical model to describe this behavior. We present numer-

ous simulation results, indicating how SLIP’s performance varies as a function of switch size and

1. maxsizeavas implemented using a randomized version of thémugmenting path algorithm [41]



CHAPTER 1 Introduction 17

traffic “burstiness”. Finally, we argue that a SLIP scheduler for a 32x32 switch can be readily

implemented at high speed on a single VLSI chip with current technology.

Chapter 3 presents an iterative version of SLIP. CalidP, this algorithm attempts in each
iteration to add connections not made by earlier iterations. The resulting match converges on a
maximal match — the largest achievable match without rearranging connections. We find that the
performance oi-SLIP increases significantly with the number of iterations, but only up to a point.
Beyond logN iterations, there is on average negligible improvement in performance. To avoid
starvation careful attention must be paid to the way that the pointers are upde®dHRrand so
we examine several variations of the algorithm, all designed to prevent starvation. Finally, we
show that although it has a longer running timei-8hIP scheduler is little more complex than a

single-iteration SLIP scheduler.

We conclude in Chapter 4 by describing algorithms that consider more information per queue,
for example the occupancy of the queue, or the waiting time of queued cells. These algorithms find
the maximum or maximakeightmatching. Each algorithm gives preference to queues with a
larger occupancy or to cells that have been waiting longest. We find these algorithms to be stable
over a wider range of traffic loads. In particular, we describe two maximum weight match algo-
rithms, longest queue firdL.QF) andoldest cell firsf OCF) and consider their performance. We
prove that the LQF algorithm is stable for all admissible i.i.d. arrival, and conjecture that both
algorithms, although too complex to implement in hardware, are stable under all admissible,
ergodic arrival processes. We consider two implementable, iterative algoritt@isandi-OCF
which, with sufficient iterations, converge on a maximal weight matching. Implementations of
both algorithms are presented. Finally, we present two interesting implementations of the Gale-

Shapley algorithm, designed to solve sit@ble marriage problem
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CHAPTER 2

The SLIP Algorithm

with a Single Iteration

1 Introduction

In this chapter we introduce, describe and evaluate the SLIP algorithm — a novel algorithm
for scheduling cells in input-queued switches. This chapter concentrates on the behavior of SLIP
with just a single iteration per cell time. In the next chapter we consider SLIP with multiple itera-

tions.

The SLIP algorithm uses rotating priority (“round-robin”) arbitration to schedule each active
input and output in turn. The main characteristic of SLIP is its simplicity: it is readily implemented

in hardware and can operate at high speed.

Before describing SLIP, we begin this chapter with a description of the basic round-robin
matching (RRM) algorithm. We show that RRM performs poorly and demonstrate this with some
examples. In Section 3 we introduce the SLIP algorithm as a variation of RRM. We show that the
performance of SLIP for uniform traffic is surprisingly good; in fact, for uniform i.i.d. Bernoulli
arrivals, SLIP with a single iteration is stable for any admissible load. This is the result of a phe-
nomenon that we encounter repeatedly in this chapter: the arbiters in SLIP have a tendency to

desynchroniz&vith respect to one another.
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As was observed for theaxsizealgorithm in Chapter 1, SLIP can become unstable for admis-
sible non-uniform traffic. In Section 5 we illustrate this with a 2x2 switch. For non-uniform i.i.d.
Bernoulli arrivals we find offered loads for which SLIP perfonvarsethan themaxsizealgo-
rithm and offered loads for which SLIP perforbetter We examine in detail a region of opera-
tion in which SLIP behaves non-monotonically: increasing offered load can actually decrease the
average gqueueing delay. We develop an analytical model describing this behavior, based on a sim-
plified version of the switch. We expand this model in Section 5.4 to analyze the delay perfor-

mance of a 2x2 SLIP switch.

In Section 6 we propose some variations on the basic SLIP algorithm, suitable for a number of
different applications. Finally, in Section 7 we describe the implementation of a centralized SLIP
scheduler, arguing that with current technology it is feasible to implement a 32x32 port scheduler

on a single chip.
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2 Basic Round-Robin Matching Algorithm

The basic round-robin (RRM) algorithm is designed to overcome two problems irc&iM:
plexity andunfairness Implemented as priority encoders, the round-robin arbiters are much sim-
pler and can perform faster than random arbiters. The rotating priority aids the algorithm in

assigning bandwidth equally and more fairly among requesting connections.

The RRM algorithm, like PIM, consists of three steps. But rather than arbaratemly the
input and output arbiters for RRM make their selection according to a deterministic round-robin
schedule. As shown in Figure 2.1, for an NxN switch each round-robin schedule contains N

ordered elements. The three steps of arbitration are:

Step 1. RequestEach input sends a request to every output for which it has a queued cell.

Step 2. Grant If an output receives any requests, it chooses the one that appears next in a
fixed, round-robin schedule starting from the highest priority element. The output notifies
each input whether or not its request was granted. The pgjnter  to the highest priority
element of the round-robin schedule is incremented (modulo N) to one location beyond
the granted input.

Step 3. Accept If an input receives a grant, it accepts the one that appears next in a fixed,

round-robin schedule starting from the highest priority element. The painter  to the
highest priority element of the round-robin schedule is incremented (modulo N) to one
location beyond the accepted output.

2.1 Performance of RRM for Bernoulli Arrivals

As an introduction to the performance of the RRM algorithm, Figure 2.2 shows the average
delay as a function of offered load for uniform i.i.d. Bernoulli arrivals. For an offered load of just
63% the round-robin algorithm becomes unstable. This is similar to but worse than the PIM algo-

rithm with a single iteration.

The reason for the poor performance of RRM lies in the rules for updating the pointers at the
output arbiters. We illustrate this with an example, shown in Figure 2.3. Both inputs 1 and 2 are
under heavy load and receive a new cell for both outputs during every cell time. But because the
output schedulers move in lock-step, only one input is served during each cell time. The sequence

of requests, grants, and accepts for four consecutive cell times are shown in Figure 2.4. Note that
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Input 1
L(1,1)=1
L(1,2)=4

Input 3
L(3,2) =2
L(3,4) =1

Input 4
L(4,4)=3

a) Step 1RequestEach input makes a request to each output for which it has a cell.

Step 2:Grant Each output selects the next requesting input at or after the pointer in the round-robin
schedule. Arbiters are shown here for outputs 2 and 4. Inputs 1 and 3 both requested output 2. Since
g, = 1 output 2 grants to input @, andg, are updated to favor the input after the one that is granted.

Q

"\. .\:

[ o

b) Step 3Accept Each input selects at ¢) When the arbitration has completed, a match-
most one output. The arbiter for input 1 is ing of size two has been found. Note that this is

shown. Sincey, = 1 input 1 accepts output less than the maximum sized matching of three.
1.3 is updated to point to output 2.

FIGURE 2.1 Example of the three steps of the RRM matching algorithm.

the grant pointers change in lock-step: in cell time 1 both point to input 1 and during cell time 2
both point to input 2tc This synchronization phenomenon leads to a maximum throughput of

just 50%.

As an example of the effect of synchronization under a random arrival pattern, Figure 2.5
shows the number of synchronized output arbiters as a function of offered load for a 16x16 switch

with i.i.d Bernoulli arrivals. The graph plots the number of non-ungjsei.e. the number of out-



CHAPTER 2 The SLIP Algorithm with a Single Iteration 22

1e+03;

X +t
" RRM
X
« X X
. « SLIP
1004 = <
] [ X ]
: X
X
—~ o7 X
] : X -
2 xxxx
[¢D] XXX
& 3
N ><><
5\ xX
c o
; H X
() L
= 104 Poix g
| ] o5 ]
=
&) E S E
(@) J ‘,@’XX
(@) P
> Py
< S
LI |
L
o
[
l—_ - e -
] _,-Hsa“
.,lNl
-
] .;;n“ i
-
e
I
.#lg"
0.1 R B BLELELELE B ELELE IR B AL DL LR IR B BLELELEL UL AL BLELEL AL B B

50 60 70
Offered Load (%)
FIGURE 2.2 Performance of RRM and SLIP compared with PIM for i.i.d Bernoulli arrivals with destinations

uniformly distributed over all outputs. Results obtained using simulation for a 16x16 switch. The graph shows the
average delay per cell, measured in cell times, between arriving at the input buffers and departing from the switch.

put arbiters that clash with another arbiter. Under low offered load cells arriving for puiiiut
find gj in a random position, equally likely to grant to any input. The probabilit;@ﬁhagk for all

_ -1
k#jis E,NTlg\l which for N=16 implies that the expected number of arbiters with the same
highest-priority value is 9.9. This agrees well with the simulation result for RRM in Figure 2.5. As
the offered load increases, synchronized output arbiters tend to move in lock-step and the degree

of synchronization changes only slightly.
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FIGURE 2.3 2x2 switch with RRM algorithm under heavy load. Synchronization of output arbiters leads to a
throughput of just 50%.

3 The SLIP Algorithm

The SLIP algorithm is a variation on RRM designed to reduce the synchronization of the out-
put arbiters. SLIP achieves this by not moving the grant pointers unless the grant is accepted lead-
ing to a desynchronization of the arbiters under high load. SLIP is identical to RRM except for a

condition placed on updating the grant pointers. Ghent step of RRM is changed to:

Step 2. Grant If an output receives any requests, it chooses the one that appears next in a
fixed, round-robin schedule starting from the highest priority element. The output notifies
each input whether or not its request was graritee.pointerg, to the highest priority
element of the round-robin schedule is incremented (modulo N) to one location beyond
the granted input if and only if the grant is accepted in Step 3.

This small change to the algorithm leads to the following properties of SLIP:

Property 1. Lowest priority is given to the most recently made connection. This is
because when the arbiters move their pointers, the most recently granted (accepted) input
(output) becomes the lowest priority at that output (input). If inputcessfully connects
to outputj, botha; andg; are updated and the connection from irigotoutput becomes
the lowest priority connection in the next cell time.

Property 2. No connection is starved. This is because an input will continue to request an
output until it is successful. The output will serve at most N-1 other inputs first, waiting at
most N cell times to be accepted by each input. Therefore, a requesting input is always
served in less than?¢tell times.

Property 3. Under heavy load, all gueues with a common output have the same through-
put. This is a consequence of Property 2: the output pointer moves to each requesting
input in a fixed order, thus providing each with the same throughput.
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FIGURE 2.4 lllustration of low throughput for RRM caused by synchronization of output arbiters. Note that pointers

[g;] stay synchronized, leading to a maximum throughput of just 50%.

But most importantly, this small change prevents the output arbiters from moving in lock-step

leading to a dramatic improvement in performance.

4 Simulated Performance of SLIP

4.1 Bernoulli Traffic

To illustrate the improvement in performance of SLIP over RRM, Figure 2.2 shows the perfor-

mance of the two algorithms under uniform i.i.d. Bernoulli arrivals. Under low load, SLIP’s per-
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FIGURE 2.5 Synchronization of output arbiters for RRM and SLIP for i.i.d Bernoulli arrivals with destinations
uniformly distributed over all outputs. Results obtained using simulation for a 16x16 switch.

formance is almost identical to RRM and FIFO; arriving cells usually find empty input queues,
and on average there are only a small number of inputs requesting a given output. As the load
increases, the number of synchronized arbiters decreases (see Figure 2.5), leading to a large sized
match. In fact, under uniform 100% offered load the SLIP arbiters adapt to a time-division multi-

plexing scheme, providing a perfect match and 100% throughput.
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FIGURE 2.6 lllustration of 100% throughput for SLIP caused by desynchronization of output arbiters. Note that
pointers §;] become desynchronized at the end of Cell 1 and stay desynchronized, leading to an alternating cycle of 2
cell times and a maximum throughput of 100%.

Figure 2.6 is an example for a 2x2 switch showing how under heavy traffic the arbiters adapt

to an efficient time-division multiplexing schedule.

4.2 “Bursty” Traffic

Real network traffic is highly correlated from cell to cell [32] and so in practice, cells tend to
arrive in bursts, corresponding perhaps to a packet that has been segmented or a packetized video
frame. Many ways of modeling bursts in network traffic have been proposed [16], [21], [4], [32].
Recently, Lelanct al. [32] have demonstrated that measured network traffic is bursty at every
level making it important to understand the performance of switches in the presence of bursty traf-

fic.

We illustrate the effect of burstiness on SLIP using an on-off arrival process modulated by a 2-
state Markov-chain. The source alternately produces a burst of full cells (all with the same destina-
tion) followed by an idle period of empty cells. The bursts and idle periods contain a geometrically

distributed number of cells.

Figure 2.7 shows the performance of SLIP under this arrival process for a 16x16 switch, com-

paring it with the performance under uniform i.i.d. Bernoulli arrivals. As we would expect, the
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FIGURE 2.7 The performance of SLIP under 2-state Markov-modulated Bernoulli arrivals. All cells within a burst are
sent to the same output. Destinations of bursts are uniformly distributed over all outputs.

increased burst size leads to a higher queueing delay. In fact, the average lqgemoyri®nalto

the expected burst length.

Although not shown here, we have also compared the performance of SLIP with other algo-
rithms for this traffic model. Our results suggest that for all the algorithms described in this thesis,
the increase in average queueing delay for input-queued switches is approximately proportional to
the expected burst length. In fact, the performance of the input-queued switch scheduling algo-

rithms become more and more alike and can become similar to the performance of an output-
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gueued switch. This similarity indicates that the performance for bursty traffic is not heavily influ-
enced by the queueing policy. Burstiness tends to concentrate the conflicts on outputs rather than
inputs: each burst contains cells destined for the same output and each input will be dominated by

a single burst at a time. As a result, the performance is limited by output contention.

4.3 As a Function of Switch Size

Themaxsizealgorithm described in Chapter 1 is known to have a running time cﬂ‘ive[xhd
the PIM algorithm is known to converge to a maximal match in a (serial) running time of
O(NIogN)l. In the next chapter we will consider the improvement in performance of SLIP when
we allow more iterations per cell time. But fosiagleiteration in which the running time is fixed,

we can expect the performance to degrade as the number of ports is increased.

Figure 2.8 shows the average latency imposed by a SLIP scheduler as a function of offered
load for switches with 4, 8, 16 and 32 ports. As expected, the performance degrades with the num-
ber of ports. But the performance degrades differently under low and heavy loads. For a fixed low
offered load, the queueing delay converges to a constant value. However, for a fixed heavy offered

load the increase in queueing delaprigportionalto N.

The reason for these different characteristics under low and heavy load lies once again in the
degree of synchronization of the arbiters. Under low load, arriving cells find the arbiters in random
positions and SLIP performs in a similar manner to the single iteration version of PIM. The proba-
bility that the cell is scheduled to be transmitted immediately is proportional to the probability that
no other cell is waiting to be routed to the same output. Ignoring the (small) queueing delay under
low offered load, the number of contending cells for each output is approximately
A Bl - %NT_%N_% which for large N converges tx%l - i% . Hence, for constant sidatle
gueueing delay converges to a constant. Under heavy load, the algorithm serves each FIFO once

everyN cycles and the queues will behave similarly to an M/D/1 queue with arrival}ﬁates and

1. PIM is designed to run on N parallel arbiters for which it has a running time O(logN). Its running time on a single
arbiter is therefore O(NIogN).
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FIGURE 2.8 The performance of SLIP as function of switch size. Uniform i.i.d. Bernoulli arrivals.
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deterministic service timdl  cell times. For an M/G/1 queue with random serviceSiaewal

rateA and service ratg the queueing delay is given by

_ AE(D)

0, A
2=1-2
0*~n0

(1)
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So, for the SLIP switch under a heavy load of Bernoulli arrivals the delay will be approxi-

mately

_ AN
T 2am @

which is proportional t\N.

4.4 Burst Reduction

In Section 4.2 we saw the not surprising result that burstiness increases queueing delay. In
addition to the performance of a single switch for bursty traffic, it is important to consider the
effect that the switch has on other switches downstream. Intuitively, if a switch decreases the aver-
age burst length of traffic that it forwards, then we can expect it to improve the performance of its

downstream neighbor. We next examine the burst-reduction properties of SLIP.

There are many definitions of burstiness, for example the coefficient of variation [43], bursti-
ness curves [28], maximum burst length [7], or effective bandwidth [31]. In this section, we use
the same measure of burstiness that we used when generating traffic in Section 4.2: the average
burst length. We define a burst of cells at the output of a switch as the number of consecutive cells

that entered the switch at the same input.

SLIP is a deterministic algorithm, serving each connection in strict rotation. We therefore
expect that bursts of cells at different inputs contending for the same output will become inter-
leaved and the burstiness will be reduced. This is indeed the case, as shown in Figure 2.9. The
graph shows the average burst length at the switch output as a function of offered load. Arrivals
are on-off processes modulated by a 2-state Markov chain with average burst lengths of 16, 32 and

64 cells, as described in Section 4.2.

Our results indicate that SLIP reduces the average burst length, and will tend to be more burst-
reducing as the offered load increases. This is because the probability of switching between multi-
ple connections increases as the utilization increases. When the offered load is low, arriving bursts

do not encounter output contention and the burst of cells is passed unmodified. As the load
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FIGURE 2.9 Average burst length at switch output as a function of offered load. The arrivals are on-off processes
modulated by a 2-state DTMC. Results are for a 16x16 switch using the SLIP scheduling algorithm.

increases, the contention increases and bursts are interleaved at the output. In fact, if the offered
load exceeds approximately 70%, the average burst length drops to exactly one cell. This indicates

that the output arbiters have become desynchronized and are operating as time-division multiplex-
ers, serving each input in turn.
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5 Analysis of SLIP Performance

In general, it is difficult to analyze the performance of a SLIP switch, even for the simplest
traffic models. Under uniform load and either very low or very high offered load we can readily
approximate and understand the way in which SLIP operates. When arrivals are infrequent we can
assume that the arbiters act independently and that arriving cells are successfully scheduled with
very low delay. At the other extreme, when the switch becomes uniformly backlogged, we can see
that desycnhronization will lead the arbiters to find an efficient time division multiplexing scheme
and operate without contention. But when the traffic is non-uniform, or when the offered load is at
neither extreme, the interaction between the arbiters becomes difficult to describe. The problem
lies in the evolution and interdependence of the state of each arbiter and their dependence on arriv-

ing traffic.

5.1 Convergence to Time-Division Multiplexing Under Heavy Load

In Section 4.3 we argued that under heavy load, SLIP will behave similarly to an M/D/1 queue
with arrival rates%| and deterministic service tilde  cell times. So, under a heavy load of Ber-
noulli arrivals the delay will be approximated by Equation 2.

To see how close SLIP becomes to time-division multiplexing under heavy load, Figure 2.10
compares the average latency for both SLIP and an M/D/1 queue (Equation 2). Above an offered
load of approximately 70%, SLIP behaves very similarly to the M/D/1 queue, but with a higher
latency. This is because the service policy is not constant: when a queue changes between empty
and non-empty, the scheduler must adapt to the new set of queues that require service. This adap-
tion takes place over many cell times while the arbiters desynchronize again. During this time, the
throughput will be worse than for the M/D/1 queue and the queue length will increase. This in turn

will lead to an increased latency.

5.2 Desynchronization of Arbiters

We have argued that the performance of SLIP is dictated by the degree of synchronization of
the output schedulers. In this section we present a simple model of synchronization for a stationary

and sustainable uniform arrival process.
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FIGURE 2.10 Comparison of average latency for the SLIP algorithm and an M/D/1 queue. The switch is 16x16 and,
for the SLIP algorithm, arrivals are uniform i.i.d. Bernoulli arrivals.

In Appendix 1 we find an approximation ferfS(t)] , the expected number of synchronized

output schedulers at timieThe approximation is based on two assumptions:

1. Inputs that are unmatched at titrere uniformly distributed over all inputs.

2. The number of unmatched inputs at tinas zero variance.

This leads to the approximation

N—10MN_ 52 OAN-—1[A°N-1
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FIGURE 2.11 Comparison of analytical approximation and simulation results for the average number of synchronized
output schedulers. Simulation results are for a 16x16 switch with i.i.d Bernoulli arrivals and an on-off process
modulated by a 2-state Markov chain with an average burst length of 64 cells. The analytical approximation is shown in
Equation 3.

where,
N = number of ports,
A = arrival rate averaged over all inputs,
A= (1-X).

This approximation is quite accurate over a wide range of uniform workloads. Figure 2.11
compares the approximation in Equation 3 with simulation results for both i.i.d. Bernoulli arrivals

and for an on-off arrival process modulated by a 2-state Markov-chain (described in Section 4.2).



CHAPTER 2 The SLIP Algorithm with a Single Iteration 35

A My 1
)\1, 2 p‘1, 2
)‘2, 1 p‘2, 1

FIGURE 2.12 2x2 Switch with 3 active flows.

5.3 Stability of SLIP

Figure 2.2 shows that the SLIP algorithm is stable for all admissible uniform i.i.d. Bernoulli
traffic. In practice, however, traffic tends to be concentrated among a small number of ports that
have quite asymmetric transmit and receive behavior, making the traffic non-uniform. In this sec-

tion we consider the stability of SLIP under non-uniform traffic.

In Chapter 1 we saw that a 2x2 switch can be unstable for the maximum sized matching algo-
rithm for admissible i.i.d. Bernoulli arrivalgshen the traffic pattern is non-uniforr8LIP oper-
ates efficiently by mimicking the behavior of the maximum matching algorithm under heavy load.
It is therefore not surprising that a 2x2 switch using the SLIP algorithm can also be unstable under

non-uniform traffic.

We illustrate the region of instability for SLIP using the 2x2 switch shown in Figure 2.12.
With i.i.d. Bernoulli arrivals, we find that the SLIP algorithm is not only unstable for certain
arrival rates, but also that its behavior is non-monotonic: increasing the arrival rate can actually

reducethe expected occupancy of the input queues.

Figure 2.13(a) illustrates this surprising effect: fixing(= )\1’ 1) =048 and varying
A, (= )\1' 5= )\2, 1) we see that SLIP becomes unstable in the re§idt< A, <0.44 , but
becomes stable again for44<A,<1-A, . Itis also interesting to note that the behavior of
Q(1,2) and Q(2,1) is unaffected by Q(1,1), increasing monotonically even through the region of
instability for Q(1,1).
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for 0.41< )\2 < 0.44, but is stable again as

traffic is increased.
FIGURE 2.13 Example of instability for SLIP and maximum sized matching algorithms for 2x2 switch. Traffic pattern

as shown in Figure 2.12\1 = 0.48

In contrastmaxsizebehaves quite differently: as shown in Figure 2.13(b) Q(1,1) becomes
unstable for alD.4<A,<1-A, .

The region in which SLIP behaves non-monotonically is small. Figure 2.14 compares the

region of instability for both SLIP armilaxsize Whereasnaxsizenas a stable region over most of

the region of admissible traffic boundedy+ A, = 0.88 , the region for SLIP is more complex.

Over most of the region of admissible traffic, increagipgr A, cannot change SLIP from unsta-
ble to stable. However, this is not the case(f@i8< A, < 0.51 , highlighted by the rectangle in

Figure 2.14.

Before trying to model this behavior, let us consider the intuition to be drawn from Figure

2.14. First, the region of instability is not symmetric\ip and  :the switch is more susceptible

to instability for smallA, when\, is large than vice-versa. This is also trueéasize Both
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FIGURE 2.14 Region of instability for SLIP anthxsizefor a 2x2 switch under i.i.d Bernoulli arrivals and the traffic
pattern of Figure 2.12. In this exampld.ambda 1= }\1 1 Lambda_2= )\1 5 = )\2 1 and

Lambda_l+Lambda 2 .For each algorithm, the shaded area represestsstainableraffic patterns.

algorithms favor large sized matchesaiksizedoes this statically, whereas SLIP does so over sev-
eral cell times) and so will favor the “cross” traffic, which clears two cells simultaneously from
both inputs in a cell time, over the “parallel” traffic that clears a cell from only Q(1,1). The second
characteristic to be noted is that SLIP performs at its worst companadtsizewhen
0.2<A;<0.4 andA; + A, isclose to 1. The reason for this is that the offered load is high, yet the

input queues Q(1,2) and Q(2,1) receive preferential service over Q(1,1). Frequently, either Q(1,2)
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FIGURE 2.15 Simplified 2x2 switch with a single queue, Q(1,1).

or Q(2,1) will change between empty and non-empty, requiring SLIP to adapt to the new traffic

pattern. This inhibits the tendency of the arbiters to desynchronize.

5.3.1 Drift Analysis of a 2x2 SLIP Switch: First Approximation

To try and understand the non-monotonic behavior of SLIP, we examine the more tractable,
simplified switch with only one queue Q(1,1) shown in Figure 2.15. This switch behaves similarly
to the 2x2 switch with 3 queues in Figure 2.12, except that cells arriving at input 1 and destined for
output 2 are not queued. A cell arrives at the beginning of the time slot with probghilitize
cell is not scheduled to be transmitted in the same cell time, it is discarded. Similarly for cells

arriving at input 2 destined for output 1.

In Appendix 2 Section 1 we analyze this switch to determine valuesuwde for which the
switch is unstable. By considering the expected increase in L, the occupancy of Q(1,1), at each cell

time, we find that the switch is unstable for
1
A> ) 4
1+ 2¢+g2—2¢3 @

This result is confirmed in Appendix 2 Section 2 where the distribution function for the occu-

pancy of Q(1,1) is found using the matrix geometric method of Neuts [36].

Equation 4 is plotted in Figure 2.16 along with the admissibility constkairg < 1 . The area
between the curves is the region for whiefiL (t)] — o . Comparing Figure 2.16 with the

region of stability for the full 2x2 switch in Figure 2.14, we see that they are quite different.



CHAPTER 2 The SLIP Algorithm with a Single Iteration 39

0.8 T T T T T T T T T

Lambda
o
@

0.5+ .

0.4 T T T T T T T T T T T
0 0.1 0.2 0.4 0.5 0.6

0.3
Epsilon
FIGURE 2.16 The area between the two curves is the region of instability for the switch in Figure 2.15.

Although the model captures the asymmetry between ¢and , and the fact that the switch per-
forms worst wherh is small and+e=1 | it domast capture the non-monotonic behavior of
SLIP. In fact, we should expect the behavior to be different: cells that arrive at one of the unbuf-
fered inputs of our simplified switch can only affect the switch for a single cell time. Cells arriving
at the full 2x2 switch of Figure 2.12 that are unscheduled when they first arrive will still be there in

the next cell time, reducing the likelihood that Q(1,1) will be serviced.

We can substantially improve the accuracy of our model by estimating the number of cell
times that an arriving cell will affect the scheduling algorithm and increase the arrival tate,

compensate.

Our claim is that the arrival rate in the approximate model shoulibigled,i.e. € = 2A,,.
Our argument in support of this is a heuristic one: when a cell arrives at an empty queue in the

exact model, it is either successfully scheduled immediately or it is queued. If it is queued, the
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FIGURE 2.17 Region of instability for simplified 2x2 switch model, using the approximhtécm 58 , 7\1 =M.

SLIP scheduler must service this queue in the next cell time. Hence, the cell has affected the

scheduler for two cell times.

With the approximation\,, =1 , we obtain a more accurate model. Figure 2.17 shows the

5€
region of instability with this approximation, modeled in the same way as before. Comparing this

with the region of instability in Figure 2.14 obtained using simulation, we see that the characteris-
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tics are very similar. The approximate model captures the non-monotonic behavior of SLIP close

to )\1 = 0.5.

5.3.2 Drift Analysis of a 2x2 SLIP Switch: Second Approximation

In our first model we found that modeling the arrival process as unqueued i.i.d. Bernoulli
arrivals was inaccurate. This was because arriving cells in the real switch are queued and affect the
scheduler for multiple cell times. In this section we try and improve upon this approximation by

modeling the arrival process more accurately.

In our second approximation, we model arrivals as an on-off process, modulated by a 2-state
discrete-time Markov chain (DTMC). The DTMC is used to modebtiwyandidle cycles of
input queues Q(1,2) and Q(2,1) in the real switch. When the DTMC is buystate, cells are
arrive at rate 1, and when it is tite state, cells arrive at rate 0. Using this model we attempt to

capture the correlation between successive cell times.

In Appendix 2 Section 1.2, we analyze such a switch to determine valdgsntiA, for
which the switch is unstable. As before, by considering the expected increase in L, the occupancy
of Q(1,1), at each cell time, we find an expression for the stable region of the switch. Unfortu-
nately the stability expression is the ratio of two 10th degree polynomiajsaindA, and we

have been unable to find a closed form expression for this region in the desiréd fef(h.)

Instead, we find the stable region numerically, as shown in Figure 2.18 along with admissibil-
ity constraintA, + A, <1 . The approximate model captures the non-monotonic behavior of SLIP
well. But although thehapeof the stability region is accurate, its values are not. The exact posi-
tion of the region is very sensitive to the expressions for the busy and idle cycles. Several of the

poles of the 10th degree polynomials are close to the admissible region: moving these only slightly

has a large affect on the position and rotation of the stability region.

5.4 Approximate Delay Model for 2x2 SLIP Switch

As described in Section 5.3.1, we can modekth®lifiedswitch in Figure 2.15 for i.i.d. Ber-

noulli arrivals as an infinite dimension DTMC. This can be solved using the matrix-geometric



CHAPTER 2 The SLIP Algorithm with a Single Iteration 42

Lambda 1

Lambda_2

FIGURE 2.18 Region of stability for the approximate model of the switch in Figure 2.12 as a funétjosnad,.
The admissibility constraink; + A, < 1 is shown. The stable region lies between the two curves and below the
admissibility constraint.

method of Neuts [36], and its solution is described in Appendix 2 Section 2. From the steady-state

distribution, N = [DO, i, 0, ...] (Appendix 2, Equation 20) we can evaluate the expected

occupancy of Q(1,1).

To determine how good our simplified model is, Figure 2.19 compares the expected delay of
the simplified switch model to the simulated average delay ofatttaal switch with three queues

in Figure 2.12. We make the assumption introduced in Section 5.3.4 thah,, . Graphs are
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shown forA; = 0.3 0.4 and 0.78representing respectively regions in which Q(1,1) is always

stable, non-monotonic and unstable.

As we found with the analytical solution for the stability region, the model dfithglified

switch exhibits the same behavior as the actual switch, but the values for delay are quite different.

6 Variations on SLIP

6.1 Prioritized SLIP

Many applications use multiple classes of traffic with different priority levels. The basic SLIP
algorithm can be extended to include requests at multiple priority levels with only a small perfor-

mance and complexity penalty. We call this the Prioritized SLIP algorithm.

In Prioritized SLIP each input now maintains a separate FdF®ach priority levebnd for
each output. This means that for an NxN switch with P priority levels, each input maintains PxN
FIFOs. We shall label the queue between inrtd outpuf at priority levell, Q, (i,j) where
1<i,j<N, 1< <P. As before, only one cell can arrive in a cell time, so this does not require a

processing speedup by the input.

The Prioritized SLIP algorithm givestrict priority to the highest priority request in each cell
time. This means th&®, (i,j)  will only be served if all que@@s(i,j), | <m<P are empty.

The SLIP algorithm is modified as follows:

Step 1. Requestinputi selects the highest priority non-empty queue for oytpte
input sends the priority levg of this queue to the outpjut

Step 2. Grant If outputj receives any requests, it determines the highest level request. i.e.
it finds L(j) = m,a><(lij). The output then chooses one input among only those inputs
that have requested at leue(j) . The output arbiter maintains a separate gjqinter, for
each priority level. When choosing among inputs at |kl the arbiter uses the pointer

9L ) and chooses using the same round-robin scheme as before. The output notifies
each input whether or not its request was granted. The pcg'pl_tﬁg is incremented
(modulo N) to one location beyond the granted input if and only if inpotepts outpyjt

in step 3.
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Step 3. Accept If inputi receives any grants, it determines the highest level grant. i.e. it
finds L' (i) = max( ij) . The input then chooses one output among only those that have
requested at Ievd|j = L'(i) . The input arbiter maintains a separate paipter, for
each priority level. When choosing among outputs at l&V€l) , the arbiter uses the
pointera, . (i) and chooses using the same round-robin scheme as before. The input noti-
fies each output whether or not its grant was accepted. The mﬂ_nﬁ')r is incremented
(modulo N) to one location beyond the accepted output.

Implementation of the Prioritized SLIP algorithm is more complex than the basic SLIP algo-
rithm, but can still be fabricated from the same number of arbiters. This is because each arbiter
only selects an input (output) among those requesting (granting) at the highest priority level. The
arbiter now consists of two parts: the first part determines thellef/éte highest priority request
(grant) and removes those requests (grants) with levelsthe second part of the arbiter is the
same round-robin arbiter as before. An implementation of Prioritized SLIP is described in Section

7.

6.2 Threshold SLIP

As we shall see in Chapter 4, scheduling algorithms that find a maxmeightmatch out-
perform those that find a maximusizedmatch. In particular, if the weight of the edge between
inputi and outpuf is the occupancy; ;(t) of input queud(i,j) then we will conjecture that the
algorithm is stable for all admissible i.i.d. Bernoulli arrival patterns. But maximum weight
matches are significantly harder to calculate than maximum sized matches [41] and to be practical,
must be implemented using an upper limit on the number of bits used to represent the occupancy

of the input queue.

In the Threshold SLIP algorithm we make a compromise between the maximum sized match
and the maximum weight match by quantizing the queue occupancy according to a set of threshold
levels. The threshold level is then used to determine the priority level in the Priority SLIP algo-
rithm. Each input queue maintains an ordered set of threshold Tevel{{ t, t,, ..., t;} , Where

t <t,<..<tp.Ift,<Q(i,j) <t , then the input makes a request of lekekt a.
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6.3 Weighted SLIP

In some applications, the strict priority scheme of Prioritized SLIP may be undesirable, lead-
ing to starvation of low-priority traffic. The Weighted SLIP algorithm can be used to divide the
throughput to an output non-uniformly among competing inputs. The bandwidth from toput

outputj is now a ratid;; =

n.
i - subject to the admissibility constrai§ts.. <1, Zf.. <1
j dij ij ij

I J

In the basic SLIP algorithm each arbiter maintains an ordered circuleé® kst{ 1, ..., N}
In the Weighted SLIP algorithm the list is expanded at oytpaute the ordered circular list
SJ. = {1, VV]} whereV\/j = LowestCommonMuItiplédij) and inpdtappearsg—: ><V\/j times
in Sj .

6.4 Least Recently Used

When an output arbiter in SLIP successfully selects an input, that input beconmsesie
priority in the next cell time. This is intuitively a good characteristic: the algorithm should least
favor connections that have been served recently. But which input should now hhightdst
priority? In SLIP, it is the next input that happens to be in the schedule. But this is not necessarily
the input that was servddastrecently. By contrast, the Least Recently Used (LRU) algorithm

gives highest priority to the least recently used and lowest priority to the most recently used.

LRU is identical to SLIP except for the ordering of the elements in the arbiter list: they are no
longer in ascending order of input number but rather are in an ordered list starting from the least
recently to most recently selected. If a grant is successful, the input that is selected is moved to the
end of the ordered list. Similarly, an LRU list can be kept at the inputs for choosing among com-

peting grants.

We might expect LRU to perform as well as, if not better than SLIP. But as we can see from
Figure 2.20, it performs significantly worse when the offered load is greater than 65%. This is
because the output arbiters do not tendasynchronizend several may grant to the same input,
as shown in Figure 2.21. Each schedule can become re-ordered at the end of each cell time which,
over many cell times, leads to a random ordering of the schedules. This in turn leads to a high

probability that the pointers at two or more outputs will point to the same input: the same problem
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FIGURE 2.20 LRU performs no better than PIM for a single iteration. Results shown for 16x16 switch with i.i.d.
Bernoulli arrivals.

encountered by RRM and PIM with a single iteration. This explains why the performance for PIM

and LRU are very similar.
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FIGURE 2.21 LRU performs poorly because of the synchronization between the output arbiters. Results shown for
16x16 switch with i.i.d. Bernoulli arrivals.
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FIGURE 2.22 Round-robigrant arbiter for SLIP and RRM algorithms. The priority encoder has a programmed
highest-priority,g;. Theacceptarbiter at the input is identical.

7 Implementing SLIP

One of the objectives of this work was to design a scheduler that is simple to implement. To
conclude our description of SLIP, in this section we consider the complexity of implementing
SLIP in hardware, arguing that with current technology it is feasible to implement a centralized

scheduler for a 32x32 switch on a single chip.

As illustrated in Figure 2.22, each SLIP arbiter consists of a priority encoder with a program-
mable highest priority, a register to hold the highest priority value, and an incrementer to move the
pointer after it has been updated. The decoder is necessary to provide a decision line for each bit in

the request vector.

Figure 2.23 shows how 2N arbiters and &abit memory are interconnected to construct a
SLIP scheduler for an NxN switch. The state memory records whether an input queue is empty or
non-empty. From this memory, arf4it wide vector presents N bits to each ofjfdnt arbiters.

The grant arbiters select a single input among the contending requests. The grant decision from

each grant arbiter is then passed to tleebeptarbiters. Each arbiter selects at most one output on
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FIGURE 2.23 Interconnection of 2N arbiters to implement SLIP for an NxN switch.

behalf of an input. The final decision is then saved in a decision register and the valueg; of the
anda; pointers are updated. The decision register is used to notify each input which cell to transmit

and to configure the crossbar switch.

The area required to implement the scheduler in silicon is dominated by the priority encoders.

Number of 2-inout Total number of
Switch Size (N) PUL 1 2.input gates for N
gates per arbiter _
arbiters
4 44 176
8 280 2,240
16 1,637 29,192
32 13,169 421,408

Table 2.1 Estimate of number of 2-input gates required to implement 1 and N arbiters for
a SLIP scheduler.

An estimate of the number of 2-input gates required to implement the programmable priority using
a PAL structure is shown in Table 2.This table shows that the number of gates per arbiter grows

approximately with N and hence with ffor the full scheduler. In some implementations, it may
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FIGURE 2.24 Interconnection of N arbiters to implement SLIP for an NxN switch. Each arbiter is used for both input
and output arbitration. In this case, each arbiter contaimeegisters to hold pointeg; anda;.

be desirable to reduce the number of arbiters, sharing them among both the grant and accept steps
of the algorithm. Such an implementation requiring only N arblitsrshown in Figure 2.24.

When the results from the grant arbiter have settled, they are registered and fed back to the input
for the second step. Obviously each arbiter must maintain a separate registegfanitha,

pointers, selecting the correct pointer for each step.

Assuming that the design is dominated by the arbiters, Table 2.1 indicates that fewer than

500,000 gates are required for a 32x32 switch. This is easily feasible in current gate-array technol-

ogy.

7.1 Prioritized SLIP

The Prioritized SLIP algorithm was described in Section 6.1 and is also the basis of the

Threshold SLIP algorithm in Section 6.2.

1. These values were obtained usisgress@andmisll from the Berkeley Octtools VLSI design package. No attempt

was made to manually optimize the design.

1. A slight performance penalty is introduced by registering the output of the grant step and feeding back the result as
the input to the accept step. This is likely to be small in practice.
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requests at the highest requested priority leve), Ohe priority encoder uses pointgy ;- The decoder determines
which input to send li) to.

For a small number of priority levels (e.g. 2 or 3yrant arbiter for Prioritized SLIP can be
implemented using a separate request vector for each priority level. The arbiter selects the highest
priority, non-zero request vector and from that vector selects a single input as before. The arbiter
makes its decision using a single priority encoder, but must maintain a separate pointer for each
priority level. When the grant arbiter has made its selection, the result and priority level is fed to

eachacceptarbiter, which operate in an identical manner to the grant arbiters.

If the number of priority levels is large, it is more efficient for an input (output) to supply the
grant (accept) arbiter with just the highest priority request (grant). An example of an arbiter for
Prioritized SLIP is shown in Figure 2.25. The arbiter selects the highest priority request and con-
siders only those requests at this level. Although the arbiter does not require any additional priority
encoders, for P priority levels it requires P pointer registers, a combinatorial circuit with N inputs,
each logP bits wide to determine the maximum requested priority level and N 2-input compara-

tors, each logP bits wide.
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CHAPTER 3

The SLIP Algorithm

with Multiple Iterations

1 Introduction

In this chapter we consider the SLIP algorithm with multiple iterations per cell time. We shall
call the generic algorithm “iterative SLIP™-$LIP). When the number of iterationss known, we

shall call the algorithm-SLIP. For example, Chapter 2 focussed on 1-SLIP.

With more than one iteration, the iterative SLIP algorithm improves upon the performance of

1-SLIP: each iteration attempts to add connections not made by earlier iterations.

We begin this section with a descriptioni<8LIP, emphasizing the differences from non-iter-
ative SLIP. In particular, we pay careful attention to the way that the arbiter pointers are updated.
In Section 3 we present some results from a simulation studgldP. As we found for 1-SLIP,
iterative SLIP is stable for all admissible uniform i.i.d. Bernoulli arrivals. We find that the perfor-
mance improves as we increase the number of iterations up tolagghit for an NxN switch.

Once again, we shall see thisgsynchronizatiof the output arbiters with respect to each other
plays an important réle in achieving low latency. However, we will also see that thé-Basit
algorithm tends to do a worse job of desynchronizing the arbiters as the number of iterations

increase.
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In Section 4 we try to improve upon the basic iterative SLIP algorithm by changing the rules
for updating the pointers so that desynchronization is improved when the number of iterations is

increased. We consider the extra complexity that these changes introduce.

Finally, in Section 5 we describe an implementation of iterative SLIP, showing that although it
may take longer to execute, the implementation is only slightly more complex than the implemen-

tation of non-iterative SLIP.

2 The lterative SLIP Matching Algorithm

2.1 Description

Thei-SLIP algorithm is an enhancement of the SLIP algorithm described in Chapter 2, but has
a number of differences specific to its iterative behavior. As before, at the beginning of each cell
time, the match process begins over. All inputs and outputs are initially unmatched and only those
inputs and outputs not matched at the end of one iteration are eligible for matching in the next.
Connections made in one iteration are never removed by a later iteration, even if a larger sized
match would result. The three steps of each iteration operate in parallel on each output and input

and are as follows:

Step 1. RequestEach unmatched input sends a request to every output for which it has a
gueued cell.

Step 2. Grant If an unmatched output receives any requests, it chooses the one that
appears next in a fixed, round-robin schedule starting from the highest priority element.
The output notifies each input whether or not its request was granted. The gpinter  to
the highest priority element of the round-robin schedule is incremented (modulo N) to
one location beyond the granted input if and only if the grant is accepted in &tépe3

first iteration.

Step 3. Accept If an unmatched input receives a grant, it accepts the one that appears next
in a fixed, round-robin schedule starting from the highest priority element. The mginter

to the highest priority element of the round-robin schedule is incremented (modulo N) to
one location beyond the accepted outply if this input was matched in the first itera-

tion.



CHAPTER 3 The SLIP Algorithm with Multiple Iterations 55

91 (1] |R1] |1 P ERPRE i | iy _jl_

Cell 1, Iteration 1{g,| = 1|, |a,| = |1 i2R - g - ﬁszil—» izA—
g;| W jay [ ig -y - ial |l g L

I I i1 11

Cell 1, Iteration 2: I G i2 - i2A iy

EEcI I I B I R

91| 2| [B1] |2 R ER PR E LY ) i3

Cell 2, Iteration 1{g,| = |3|, |a,| = |3 iy P JZG gl — i2A -
gy |3y L I3 o 2 N I 11 i2

i) |- | is

Cell 2, Iteration 2: j2 G I3l — i2A -

Jg L [y U2

FIGURE 3.1 Example of starvation, if pointers are updated after every iteration. The 3x3 switch is heavily loaded, i.e.
all active connections have an offered load of 1 cell per cell time. The sequence of grants and accepts repeats after 2 cell
times, even though the (highlighted) connection from input 1 to output 2 has not been made. Hence, this connection will
be starved indefinitely.

2.2 Updating Pointers

Note that pointerg; anda; are only updated for matches found in the first iteration. Connec-
tions made in subsequent iterations do not cause the pointers to be updated. This is to avoid starva-
tion. To understand how starvation can occur, we refer to the example of a 3x3 switch with 5 active
and heavily loaded connections, shown in Figure 3.1. The switch is scheduled watBlthe
algorithm, except in this case the pointers are updated after both iterations. The figure shows the

sequence of decisions by the grant and accept arbiters; for this traffic pattern, they form a repetitive
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cycle in whichthe highlighted connection from input 1 to output 2 is never seBasch time the

round-robin arbiter at output 2 grants to input 1, input 1 chooses to accept output 1 instead.

Starvation is eliminated if the pointers are not updated after the first iteration. In the example,

output 2 would continue to grant to input 1 with highest priority until it is successful.

2.3 Properties

Thei-SLIP algorithm has the following properties:

Property 1. Connections matched in the first iteration become the lowest priority in the
next cell time. This is the same as Property 1 of 1-SLIP described in Chapter 2 Section 3.

Property 2. No connection is starved. As with 1-SLIP, and because of the requirement
that pointers are not updated after the first iteration, an output will continue to grant to the
highest priority requesting input until it is successful.

Property 3. Fori-SLIP with 1 iteration, and under heavy load, queues with a common
output all have the same throughput. This is the same as in Chapter 2 Section 3.

Property 4. Fori-SLIP with more than one iteration, and under heavy load, queues with a
common output may each have a different throughput. An example of this property is
shown in Figure 3.2 for a heavily loaded 3x3 switch scheduled using 2-SLIP. The state of
the grant and accept arbiters forms a cycle that repeats every three cell times. Note that
although all non-empty queues are served, Q(2,3) is séwiedper cycle whereas
Q(1,3) is served onlgnce

Property 5. The algorithm will converge in at most N iterations. Each iteration will
schedule zero, one or more connections. If zero connections are scheduled in an iteration
then the algorithm has converged: no more connections can be added with more itera-
tions. Therefore, the slowest convergence will occur if exactly one connection is sched-
uled in each iteration. At most N connections can be scheduled (one to every input and
one to every output) which means the algorithm will converge in at most N iterations.

Property 6. The algorithm will not necessarily converge to a maximum sized match. At
best, it will find amaximalmatch: the largest size match without removing connections
made in earlier iterations.
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FIGURE 3.2 Example of unequal service under heavy load for 2 inputs that share an output.The 3x3 switch is heavily
loaded, i.e. all four active connections have an offered load of 1 cell per cell time. The sequence of grants and accepts
for 2-SLIP repeats after 3 cell times. During each cycle, Q(2,3) is served twice whereas Q(1,3) is served only once.
Note that for 1-SLIP, only the 1st cell time would be different and Q(2,3) would be served only once per cycle.

3 Simulated Performance of Iterative SLIP

3.1 How Many lterations?

Now that we have an iterative algorithm, we need to decide how many iterations to perform
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during each cell time. Ideally, from Property 5 above we would like to perform N iterations. How-
ever, in practice there may be insufficient time for N iterations, and so we need to consider the pen-
alty of performing onlyi iterations, wheré <N . In fact, because of the desynchronization of the
arbiters,i-SLIP will usually converge in fewer than N iterations. An interesting example of this is
shown in Figure 3.3. In the first cell time, the algorithm takes N iterations to converge, but thereaf-
ter converges in one less iteration each cell time. After N cell times, the arbiters have become

totally desynchronized and the algorithm will converge in a single iteration.

How many iterations should we use: it clearly doesn’t always take N? One option is to always
run the algorithm to completion, resulting in a scheduling time that varies from cell to cell. In
some applications this may be acceptable. In others, such as in an ATM switch, it is desirable to

maintain a fixed scheduling time and to try and fit as many iterations into that time as possible.

Under simulation, we have found that forxiN switch it takesaboutlogyN iterations fori-
SLIP to converge. This is similar to the results obtained for PIM in [3], in which the authors prove
that

4
31

wherel is the number of iterations that PIM takes to converge. However, although for all the

E() < log,N + (1)

stationary arrival processes we have consid&gx< log,N i-SafP, we have not been able to

prove that this relation holds in general.

As an example, Figure 3.4 compares the number of iterations required for PiNGaHRIto

converge under uniform i.i.d. Bernoulli arrivals.

3.2 Bernoulli Traffic

To illustrate the improvement in performancei-&LIP when the number of iterations is
increased, Figure 3.5 shows the average queueing delay for 1, 2 and 4 iterations under uniform
i.i.d. Bernoulli arrivals. We find that multiple iterationsieBLIP significantly increase the size of

the match and therefore reduce the queueing Hetafact,n-SLIP is stable for ath under admis-

1. Although not shown, we find that increasirapove 4 for a 16x16 switch leads to a negligible performance improve-
ment.
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FIGURE 3.3 Example of the number of iterations required to converge for a heavily loaded NxN switch. All input
queues remain non-empty for the duration of the example. In the first cell time, the arbiters are all synchronized. During
each cell time, one more arbiter is desynchronized from the others. After N cell times, all arbiters are desynchronized
and a maximum sized match is found in a single iteration.
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FIGURE 3.4 An example of the number of iterationsi{8LIP and PIM to converge for uniform i.i.d. Bernoulli traffic
as a function of the offered load for a 16x16 switch. Each algorithm is run to completion during each cell time to
determine how many iterations are required before no more connections can be added.

sible uniform i.i.d. Bernoulli arrivals. This should come as no surprise: in Chapter 2 we saw that 1-

SLIP is stable under these conditions. Intuitively, the size of the match increases with the number
of iterations: each new iteration potentially adds connections not made by earlier iterations. As a
result, for a given set of queue occupangied)-SLIP can provide an instantaneous match closer

to the maximum sized match thasSLIP. This is illustrated in Figure 3.6 which compares the size

of eachi-SLIP matching with the size of the maximum matching for the same instantaneous queue

occupancies. Under low offered load, the 1-SLIP arbiters move randomly and the ratio of the
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FIGURE 3.5 Performance dfSLIP for 1,2 and 4 iterations compared with FIFO and output queueing for i.i.d
Bernoulli arrivals with destinations uniformly distributed over all outputs. Results obtained using simulation for a 16x16
switch. The graph shows the average delay per cell, measured in cell times, between arriving at the input buffers and

departing from the switch.
match size to the maximum match size decreases with increased offered load. But when the load

exceeds approximately 65%, the ratio begins to increase linearly. This is the result of desynchroni-
zation of the output arbiters which leads to a better and better match as the load increases. 2-SLIP
and 4-SLIP behave similarly and, as expected, the ratio increases with the number of iterations
indicating that the matching gets closer to the maximum sized match. But only up to a point: for an

16x16 switch under this traffic load, increasing the number of iterations beyond four does not mea-

surably increase the average match size.
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FIGURE 3.6 Comparison of the match size if@LIP with the size of a maximum sized match for the same set of
requests. Results are for a 16x16 switch and uniform i.i.d. Bernoulli arrivals.

Although the average queueing delay is reduced by increasing the number of iterations, the
synchronization of the output arbiténsreasesas shown in Figure 3.7. This unfortunate behavior
is the consequence of only allowing the arbiters to be updated after the first iteration. With 1-SLIP,
every successful connection moves an arbiter’s pointer, leading to a rapid desynchronization under
high offered load. For 2-SLIP and 4-SLIP, only those connections made by the first iteration move
the arbiter’s pointer, leading to a slower rate of desynchronization. Later in this chapter we will

consider ways thatSLIP can be modified to reduce the arbiter synchronization.
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FIGURE 3.7 Average number of synchronized output schedulers as a function of offered load for uniform i.i.d.
Bernoulli arrivals. Scheduling is with 1-SLIP, 2-SLIP and 4-SLIP.

3.3 Bursty Traffic

As we did for 1-SLIP, we illustrate the effect of burstines$-8hIP using an on-off arrival
process modulated by a 2-state Markov-chain. The source alternately produces a burst of full cells
(all with the same destination) followed by an idle period of empty cells. The bursts and idle peri-

ods contain a geometrically distributed number of cells.

Figure 3.8 shows the performancei«SLIP under this arrival process for a 16x16 switch,

comparing the performance for 1, 2 and 4 iterations. As we would expect, the increased burst size
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FIGURE 3.8 Performance ofSLIP for 1, 2 and 4 iterations under bursty arrivals. Arrival process is a 2-state Markov-
modulated on-off process. Average burst lengths are 16, 32 and 64 cells.

leads to a higher queueing delay whereas an increased number of iterations leads to a lower queue-
ing delay. In all three cases, the average latenpyoigortional to the expected burst length. As

pointed out in Chapter 2, the performance for bursty traffic is not heavily influenced by the queue-

ing policy.
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FIGURE 3.9 The performance SLIP as function of switch size. Uniform i.i.d. Bernoulli arrivals.

3.4 As a Function of Switch Size
In Chapter 2 we found that 1-SLIP performance degrades as the switch size increases. As

shown in Figure 3.9(a), we find similar behavior for 2-SLIP. Under low offered load the average

cell latency approaches a constant, whereas under high load the delay is approximately propor-

tional to N.

Although similar under low offered load, 4-SLIP exhibits quite different behavior under high
offered load: the average latency can actuddlgreasavith N. This is shown in Figure 3.9(b).
Under an offered load below approximately 80% the ordering is strict: increldsimgeases

average latency. Between 80% and 100% offered load, the ordering changes — at 99% offered

load the ordering has reversed and the average latency decreases strittly with
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It should be noted that theaxsizealgorithm does not exhibit the same behavior. The average

latency for themaxsizealgorithm always increases with

Because of the difficulty of analyzing this algorithm with more than a single iteration, we offer
only a heuristic explanation for this result. We believe the result to be the combination of two
effects. First, for switches up to a size 64x64, the algorithm almost always converges in fewer than
4 iterations. This means that in 4 iterations, the match size is closenbaximealmatch: the larg-
est match possible without rearranging connections. Second, the number of possible matches
under heavy load equals approximatslywhich grows rapidly witiN. Moreover, adN increases
it becomes more likely thatmaximalmatch equals a maximum match. Hence, with sufficient
iterations and aBl increases, it becomes more likely that the SLIP algorithm will find a match
close or equal to a maximum sized match. By comparing the size of the match with the maximum

sized match, we have found this to be the case.

It should be noted that the PIM algorithm exhibits similar behavior. This supports our explana-

tion: PIM likei-SLIP, converges onmaximalmatch.

4 Variations of Iterative SLIP

In Chapter 2 we found that 1-SLIP performs well because of the desynchronization of the out-
put arbiters under high offered load. As shown in Figure-SIIP is less effective at desynchro-
nizing its arbiters, because the pointers can only be updated for connections made by the first

iteration.

In this section we consider two variationsie®LIP that allow the pointers to be updated after
every iteration. Both variations are significantly more complex to implement thari{&sR and
the performance improvements are inconclusive. We believe that these algorithms require further

study.

4.1 Iterative SLIP with LRU Accept Arbiters

Figure 3.1 showed how starvation could occur if we allowed the pointers to be updated after

every iteration. In the example, the problem was not that output 2 never grants to input 1. Rather,
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FIGURE 3.10 I-SLIP-LRU algorithm under uniform i.i.d. Bernoulli traffic. For 1 iteration, the number of
desynchronized schedulers is almost identical to 1-SLIP. However, the number of schedulers increases only slightly with
the number of iterations. This is quite different from i-SLIP for 2 and 4 iterations (see Figure 3.7)

when input 1 received a grant, it never accepted it. If we can encourage input 1 to accept output 2
if it has not done so recently, then we can prevent the connection from being starved. One way to
achieve this is for the input arbiter to give highest priority to the least recently used (LRU}.output

We call this algorithm “iterative SLIP output arbiters with LRU input arbitarSL(IP-LRU).

Thei-SLIP-LRU algorithm allows us to update the pointers after each iteration so that every

established connection will help desynchronize the output arbiters. Figure 3.10 demonstrates that

1. Starvation could also be avoided by using random selection at the input arbiter.
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FIGURE 3.11 An example of the average number of iterationd-&irlP-LRU to converge for uniform i.i.d.
Bernoulli traffic as a function of the offered load. The algorithm is run to completion during each cell time to
determine how many iterations are performed before no more connections can be added.

unlikei-SLIP, the number of synchronized schedulers-®IIP-LRU increases only very slightly
with the number of iterations. This is beneficial in two ways: it means that for a fixed number of
iterations,i-SLIP-LRU will provide higher performance, or alternatively, if run to completion

SLIP-LRU will converge faster (Figure 3.11).
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4.2 Separate Pointers for each Iteration

An alternative way to prevent starvation in iterative SLIP is to maintain a separate pointer for
each iteration. Fan-SLIP, outpuf now maintains grant pointersgj D, ..., 9, (n) . During the
first iteration, the arbiter usg;?(l) , updating the pointer if and only if a connection is established
in this iteration. In the next iteration, the arbiter ugje(Q) , and so on. In other words, the arbiter

pointer is updated at the end of every iteration and for every connection.

We now show that no queue is starved of service by this algorithm. Assume that the queue
Q(i,J) at inputi is non-empty and thus requests service from oyifNibw assume that we are in
iterationk. Outputj is using the pointegj (k) , and we shall assume that currgjw(lk() =
During iteratiork of every cell time, outputwill grant to inputi until either (i) inpui accepts out-
putj and Qf,j) is served, or (ii) outpytserves Q(j) in iterationk' # k , and Q) becomes empty.

If Q(i,j) does not become empty in iteratikn , then eventually it will be served in itekadimoh
9, (k) will be updated. So, in either case,,f(is served ancgj (k) will eventually move. This
means every non-empty queue will eventually be served and none will be starved of service indef-

initely.

The advantage of this algorithm is that the pointers at each iteration tend to become desyn-

chronized. More importantly, every connection that is established helps desynchronize the arbiters.

We find that for the arrival processes described in Section 3, this variation on the basic SLIP
algorithm doesiotimprove performance. It therefore does not seem worth the extra complexity of

maintaining multiple pointers at each output. We believe that this requires further study.

5 Implementing Iterative SLIP

To conclude the description BSLIP, we consider the complexity of implementing the algo-
rithm in hardware. Implementation BSLIP is very similar to non-iterative SLIP, described in

Chapter 2 Section 7. Figure 3.12 shows how for an NxN switch, 2N arbiters aﬁcbistmkkmory
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FIGURE 3.12 Interconnection of 2N arbiters to implemeBLIP for an NxN switch.

may be interconnected to implem&+8LIP. The arbiters are almost identical to those used for
non-iterative SLIP. They differ in two ways:
1. When an input or output is matched, its arbiter is disabled in subsequent iterations, pre-
venting it from making additional matches. This is simple for the accept arbiter: when-
ever it makes a decision, it is disabled in all further iterations. However, it is not known

whether a grant arbiter’s decision is accepted until the end of the iteration. The decision
register must feedback an indication to the grant arbiters. This is shown in Figure 3.12.

2. The arbiters only update pointesandg; after the first iteration.

As before, the complexity ¢fSLIP is dominated by the arbiters. In fact, the number of gates

required to implemeritSLIP is almost identical to non-iterative SLIP.

In some implementations it may be desirable to reduce the number of arbiters, sharing them
among the grant and accept steps of the algorithm. An implementation using only N arbiters is
shown in Figure 3.13. The results from the arbiters in the grant phase are registered and fed back
for the accept phase. The number of gates for this implementation is almost halved, but with the

performance penalty of an extra clock delay through the holding register.
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CHAPTER 4

Weighted Matching
Algorithms

1 Introduction

In this chapter we describe algorithms that consider more than one bit of information per
gueue, for example the occupancy of the queue, or the waiting time of queued cells. These algo-
rithms find the maximum or maximaleightmatching, giving preference to queues with a larger

occupancy, or to cells that have been waiting longest.

We saw in Chapter 1 that maximizing the size of the match is not necessarily desirable as this
can lead to instability for an offered load below capacity, and can lead to starvation for an offered
load above capacity. This was demonstrated in Chapter 2 where we considered simple arrival pat-
terns that are unstable for both thaxsizeand SLIP algorithms, even for a 2x2 switch. The reason
that these algorithms become unstable is that they only consider one bit of information per input
gueue: whether the queue is empty or non-empty. As we shall see, the maximum weight algo-

rithms are stable over a wider range of workloads.

We start by describing two maximum weight matching algorithomgjest queue firdl.QF)
andoldest cell firsf{ OCF) and consider their performance. We prove that the LQF algorithm is sta-
ble under i.i.d. arrivals and conjecture that both algorithms, although too complex to implement in

hardware, are stable under all admissible offered loads.
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We describe the more practical, parallel and iterative algorititio®F andi-OCF which
attempt to find maximal weight matchings in a similar mann&SblP and present schematic

implementations of both algorithms.

Finally, we describe an interesting class of algorithms that sohstdhke marriage problem
Solutions to this well-studied problem find a special kind of weighted bipartite matching called a
stablematching. Although stable matchings are generally different from either a maximum sized
or maximum weight match, they provide good performance and are readily implemented in hard-

ware.

2 Maximum Weight Matching
Figure 1.2 shows an example of a matching on a weighted bipartite graph. The maximum

weightmatching M is one that maximizes ;D Wi whevg j is the weight assigned to the
Q.M ’
edge between verticésandj. As with the maximum size matching, the maximum weight match-

ing for a bipartite graph can be found by solving an equivalent network flow problem. The most

efficient known algorithm for solving this problem converge@(mzlog3N) running time [41].

We now consider two types of maximum weight matching that may be used to schedule cells

in an input-queued switch: LQF and OCF.

In the LQF algorithm, preferential service is given to input queues that are more heavily occu-

pied. As illustrated in Figure 4.1, this is achieved by defingt) to be equal to the queue occu-

pancyLi'j (t).

The OCF algorithm gives preferential service to cells that have been queued for a long time.

This is achieved by defining; j(t) to be equal to the waiting Wp?(t) of the cell at the head of
queueQ(i, j) .
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FIGURE 4.1 Example of weights for the LQF maximum weight matching algorithm.

O L R R

FIGURE 4.2 Example of 2x2 switch for which, using the LQF algorithm, inadmissible traffic may lead to the
starvation of an input queue.

2.1 Starvation with LQF

Under inadmissible traffic it is possible for the LQF algorithm to permanently starve an input

gueue. As a simple example, consider the 2x2 switch shown in Figure 4.2. Three queues have an

arrival rate equal to their capacity and will be unstable, growing without bound. Now assume that
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all three queues have grown to a length of two cells. Further assume that a single cell arrives at the
fourth queueQ(2,2) but that no further cells arrive at this queue. Because of the large arrival rate,

the other queues will never contain fewer than two cells aqz@)will never be served.

OCF, however, cannot starve a queue under any offered load. Cells at the head of queues that

have not been served recently increase in weight until, eventually, they are served.

2.2 Performance of LQF and OCF Algorithms
2.2.1 Uniform Workload

If all switch inputs and outputs are identically loaded, the LQF algorithm hageaageper-
formance identical to thmaxsizealgorithm, Figure 4.3(a). This is because there is no benefit, on
average, in distinguishing between different input queues when they all have identical average
arrival rates. We have found this to be the case for a range of uniform workloads with and without

correlated arrivals. The OCF algorithm has a slightly worse average behavior than LQF.

However, because during fluctuations in waiting time it favors cells that have been waiting
longest, thevariancein cell latency is lower for the OCF algorithm. This is illustrated in Figure

4.3(b), where the variance of cell latency is plotted against the offered load.

2.2.2 Non-Uniform Workload

The difference between the maximum weight and maximum size matching algorithms is more

marked under a non-uniform workload, particularly when not all flows are active.

We illustrate this by way of a simple example: an arbitrary arrival pattern for a 4x4 switch,
shown in Figure 4.4. We find that for theaxsizealgorithm the switch is unstable far>0.31

whereas for the LQF and OCF algorithms, the switch is stable for all admissible values of

The LQF and OCF algorithms maintain much closer average queue lengths tmexdize
algorithm. Figure 4.5 shows the average cell latency through each of the 16 input queues in the
4x4 switch of Figure 4.4, with all average raless 0.30 . Even thoughmthesizealgorithm is

stable for this workload, the average queue lengths differ widely. This difference increases as the
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FIGURE 4.3 16x16 switch scheduled using the LQF, OCHwardizescheduling algorithms.

All flows have identical average arrival rate= A,

j sucht?t)\iﬁl,g)\iﬁl
i T

FIGURE 4.4 Example of 4x4 switch with non-uniform traffic pattern. Although admissible, this traffic pattem can b

unstable for the maximum scheduling algorithm. It is stable for the LQF and OCF algorithms.

offered load increases, and it is the three queuEs 1), Q (2, 2),Q (2, 3)

maxsize

that become unstable
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FIGURE 4.5 Variation in queue lengths under the non-uniform workload shown in Figure 4.4, with i.i.d. Bernoulli
arrivals and\ = 0.30 .

when the average arrival rate exceads 0.31 . Both LQF and OCF maintain average queue
lengths that are almost identical independent of the arrival rate.
2.2.3 Stability of 2x2 Switch

In this section we consider the stability of a 2x2 switch, scheduled with a maximum weight

matching algorithm.
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We start with a simple observation: if an arrival pattern is such that all input queues are perma-
nently occupied, the switch will be stable. This is because the switch can serve two queues in

every cell time.

Theorem 4.1:If Ly 1(n), Ly S(n), L, 1(n), L, ,(n) >0 for all n, LQF and OCF are stable for

a 2x2 switch.

Proof: Assume that at time the switch is stable. i.e.

L(n) =Ly M) +Ly ) +Ly () + L, fn) <o (1)

Becausel_l, 1(n), Ll. o(n), L2’ 1), L2’ ,(N)>0 , the LQF and OCF algorithms will always

serve exactly 2 queues. There can be no more than two arrivals to the switch in a cell time, so

L(n+1) <L (n) )

and so the switch must be stable at tmag. Hencel (n) cannot become unbounded, and the

switch is stablel]

In general, not all input queues will be permanently occupied. At any time, one or more
gueues may be empty and, as a result, the scheduling algorithm may select to serve fewer than two
gueues. Recall that it was when one queue was empty that the maximum size matching algorithm
(and SLIP and PIM) could become unstable. However, below we show that for a 2x2 switch LQF

and OCF are stable when one or more queues are permanently empty.

Theorem 4.2:LQF and OCF are stable for the 2x2 switch with three active flows illustrated in

Figure 4.6 and independent arrivals.

Proof: Appendix 3 Section 1 finds sufficient conditions on a scheduling algorithm so that this

switch is stable for independent arrivals:

1. 1fL, ;(n) = 0, then set crossbar to configuratién

2. Else, ifL, ;(n) = 0 and/ot, ,(n) = 0 ,then set crossbar to configuration

3. Else, set craossbar configuration to either B.
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FIGURE 4.6 2x2 switch with three active flows. The two possible switch configuraiamslB, are shown.

LQF clearly satisfies conditions (1) and (3) above, but not (2). Define an algoBtithmat is
exactly the same as LQF under conditions (1) and (3), but also satisfies condition (2). Glearly,
stable. LQF serve®(1, 2) ar@(2, 1) atleast as ofte@,as0 under LQF these two queues must
be stable. It remains to be shown tigXt, 1) is stable under LQF. Assume that under LQF,

Q(1, 1) is unstable For this to be the ca€@(1, 1)  must grow so that at some time

Ly o) = 1+Ly ) +Ly (), 3)

and Q(1, 1) will then be served continuously until

Ly a(m =Ly M +L, 4(n). 4)
During the time thaQ(1, 1) is served continuously, its queue length cannot increase. There-
fore, L1, 1(n) is bounded byl+L1’ 2(n)+L2, 1N Q1,2 an@(2,1) are stable, so
1+ L1, S(n) + L2’ 1(n)is bounded, which means thQ(1, 1) is stable. An analogous argument

based on waiting times holds for OCF.

It is interesting to consider whyaxsizecan be unstable for this switch (Chapter 1, Section
3.3). Although the conditions above are not strictly necessary for the switch to be stable, they give
an intuitive explanation. If condition (2) above is true, tiexsizealgorithm may select either

configurationA or B, even if one of the queues grows without bound.
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Theorem 4.3:For any arrival process to a 2x2 switch, if for some n

‘{ Ly (m+L, () —{L; (n+L, (M}|=<3 5)

then for alln' = n

‘{ Ly () +L, (0} —{L; () +L, 4(n)}|=4. ©6)

Proof: See Appendix 3 Section 2.

To summarize these results for a 2x2 switch:

1. For any arrival process, it is not possible for all 4 input queues to become unstable
simultaneously.

2. When arrivals are i.i.d. and only three flows are active, it is not possible for any queue
to become unstable.

3. For any arrival process, if the queues are initially empty, the occupancies of the two
sets of input queues:; ,(n) +L, ,(n) amg (n)+L, (n) can differ by at most four

cells. This means that if instability occurs, at least one queue from each set must be unsta-
ble.

This leads us to make the following conjecture, as yet unproved.

Conjecture: For a 2x2 switch, LQF and OCF are stable for all ergodic, admissible arrival

processes.

2.2.4 Stability of NxN Switch

Theorem 4.4:LQF is stable for all admissible i.id. arrival processes.

Proof: The proof is given in appendix 4. In summary, we show that for an NxN switch sched-
uled using the LQF algorithm, there is a negative single-step drift in the sum of the squares of the

state. In particular,

E[LT(n+L(n+ D) -LT(MLM)| L] <-e|Ln)] +k, (7)
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k>0,e>0.0

The term—¢||L(n)| indicates that whenever the occupancy of the input queues is large enough,
the expected drift is negative. Sholjldn)| become very large, the downward drift also becomes

large, and so the stability is quite “strong”. This leads us to the following conjecture.
Conjecture: LQF and OCF are stable for all ergodic, admissible arrival processes.

One possible definition of stability for ergodic arrivals is

T
Jim % E[ ZOIIL(H)II} <o, (8)

Although we have not been able to find admissible arrival processes for which an NxN switch
is unstable using the LQF and OCF, we have not been able to prove that this conjecture is true in

general. This remains an open problem.

3 lIterative Maximal Weight Matching Algorithms

A goal of this work is to determine fast scheduling algorithms that can be readily implemented
in hardware. Unfortunately, the maximum weight matching algorithms, LQF and OCF, are very

complex to implement, and require @(1N2IogaN) running time.

As an alternative, we now consider iterative approximations to LQF and OCF, based on the
SLIP and PIM algorithms, that are designed to be readily implemented in hardware and to quickly

find a maximal weight match. These algorithms are called respecti€)f; andi-OCF.

3.1i-LQF
Like PIM and SLIPj-LQF is an iterative algorithm consisting of N output and N input arbiters
operating in parallel. The scheduler maintaind\@n  word memory; each entry indicates the occu-

pancy of an input queug, j(t) . The word widthjs determined by the maximum queue length,

L

b (9)
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As before, at the beginning of each cell time the match process begins over. All inputs and out-
puts are initially unmatched and only those inputs and outputs not matched at the end of one itera-
tion are eligible for matching in the next. Connections made in one iteration are never removed by

a later iteration, even if a larger sized match would result. The three steps of each iteration are as

follows:

Step 1. RequestEach unmatched input sends a request word of @fith  bits to each out-
put for which it has a queued cell, indicating the number of cells that it has queued to that

output.

Step 2. Grant If an unmatched output receives any requests, it chooses the largest valued
request. Ties are broken randomly.

Step 3. Accept If an unmatched input receives one or more grants, it accepts the one to
which it made the largest valued request. Ties are broken randomly.

3.2 Properties

Thei-LQF algorithm has the following properties:

Property 1. Independent of the number of iterations, the longest input queue is always
served. The longest input queue will lead to the largest request in the first iteration, which
must be granted, resulting in the largest grant. This must be accepted.

Property 2. As withi-SLIP, the algorithm converges in at most N iterations. If during
some iteration no connection is made, the algorithm has converged and no further con-
nections are possible. So, prior to convergence at least one connection is added per itera-
tion. There are N inputs and N outputs, requiring at most N iterations to converge.

Property 3. For an inadmissible offered load, an input queue may be starved. This is the
same as for LQF, described in Section 2.1.

3.3i-OCF
Thei-OCF algorithm eliminates the starvation problem-afQF by favoring cells with a
longer waiting timei-OCF differs fromi-LQF only in Step 1: the value of the request from input

to output equals the waiting timewy, j(t) , of the cell at the head of quig({ig)
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3.4 Properties

Thei-OCF algorithm has the following properties:

Property 1. Independent of the number of iterations, the €&litliat has been waiting the
longest time in the input queues is served. First noteGmust be at the head of its
FIFO queue. The input will make the largest request to the scheduler in the first iteration
on behalf ofC, which must be granted, resulting in the largest grant. This must be
accepted.

Property 2. As withi-LQF, the algorithm converges in at most N iterations.

Property 3. No input queue can be starved indefinitely.

3.5 Performance ofi-LQF and i-OCF
3.5.1 Uniform Workload

Bothi-LQF andi-OCF have worse throughput-delay performance than LQF and OCF. This is
to be expected — neither of the iterative algorithms will remove connections in an attempt to max-
imize the match. The performance of both algorithms under uniform i.i.d. Bernoulli arrivals is
illustrated in Figure 4.7. Once again, both iterative algorithms are stable up to an offered load of

100%, albeit with a slightly larger latency than for the maximum weight algorithms.

3.5.2 Nonuniform Workload

We have not found a workload for which theEQF andi-OCF are unstable; under non-uni-
form arrival patterns, both algorithms exhibit similar throughput-delay performance to the LQF
and OCF algorithms. We illustrate this by way of the same simple (but arbitrary) example as
before, shown in Figure 4.4. Our results in Figure 4.8 show not only theLtQE andi-OCF

algorithms are stable, but that their performance is very close to the maximum weight algorithms.

3.5.3 Stability for 2x2 Switch

Conjecture: With sufficient iterations, i-LQF and i-OCF are stable for a 2x2 switch with all

admissible workloads.
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FIGURE 4.7 Performance oL.QF andi-OCF algorithms for uniform i.i.d. Bernoulli arrivals, compared with LQF
and OCF algorithms.

3.6 Implementation ofi-LQF and i-OCF
Both i-LQF andi-OCF are relatively simple to implement in hardware, although more com-
plex than the-SLIP algorithm described in Chapter 3. The main difference is that the simple prior-

ity encoders that perform arbitration in SLIP are replaced by more complex comparators.

Figure 4.10 shows a schematic designifbF. The design consists of 2N arbitérBach
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FIGURE 4.8 Performance oL QF andi-OCF algorithms under the non-uniform workload, shown in Figure 4.4.

Fori-LQF, the registers for outpjitmaintain the occupancy values for each input queue

Q(i1,j) and similarly, the registers at inputmaintain the occupancy values for each input

queueQ (i, j OJ) . If outpui grants to input, then grant arbitgrenables the register containing

L; J.(t) at accept arbitar The finite state machine prevents matched inputs and outputs from par-

1. As with SLIP, the arbiters may be reduced to N by sharing them between the grant and accept stages.
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FIGURE 4.9 Implementation of NxXNLQF algorithm using 2N arbiters. For brevity, only grant arbiters ljamﬂ
accept arbiters 1 aricare shown here.

ticipating in future iterations by disabling the corresponding arbiters. The implementatien for

OCEF is exactly the same as fdrQF, except that the registers hold cell waiting times, rather than

gueue occupancies.

The implementation farLQF is clearly more complex than feSLIP, both in the number of

gates required to implement the arbiters and in the size of the registers required to hold the queue

occupancy value$-LQF also requires more state to be updated at the beginning and end of each

cell time. In a cell time, at most one queue at each input can increase its occupancy and by only

one cell. The input must indicate to the central scheduler which queue has increased; the scheduler
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must increment the corresponding value. Likewise, in a cell time, at most one queue at each input
may decrease its occupancy, and by only one cell. The input does not need to indicate which queue
has changed: it is the one that the scheduler selected during its arbitration. The scheduler must dec-

rement the corresponding value.

Choosing the value fdy is an important design decision, affecting the number of different

gueue lengths that can be distinguished. If the size of the input queues is large, or if the gate count

is to be minimized, it may be required tt2kt< Lnax - Two possible modifications to the algo-
rithm in this case are: (1) if the occupariqyj(t) > 2b , issue a request 02size  : or (2) if the

maximum queue size = 2bx2n | issue a request of $jin£{t)/2” , Which is readily

achieved in hardware by truncating the lowebits.

It is interesting to note that although for small values of Nlatie complexity of-LQF is

greater than for-SLIP, its complexity increases more slowly with N. In Chapter 2 we found that
the number of gates required to implemieBLIP increases with N i-LQF consists of 2N com-
parators, each comprising(logblogN)  gates ar?drégisters each wit®(b) . For smalland

N, the comparators will dominate the total number of gates, increasind\WaigN . With suffi-

ciently large N, the total gate count is dominated by the registers which increaseé wittbbth

cases, this increase is at a slower rate than$taiP.

4 Stable Marriages

Thestable marriage problerwas first introduced in 1962 by Gale and Shapley [13] and since
then has been studied extensively [15], [26]. Solutions to the stable marriage problestdbid a
and complete matching on a bipartite graph and can therefore be used to schedule cells in an input-
queued switch. More importantly, there exists a well known algorithm (the Gale-Shapley Algo-
rithm — GSA) that is feasible to implement in hardware and will always find a stable matching in

N iterations.
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We begin this section with a description of the stable marriage problem and describe the GSA.
We then consider two different ways that the GSA can be used to schedule cells in an input-queued
switch; one is a variation of LQF and the other a variation of OCF. We finish the section with a

description of the implementation of these algorithms.

4.1 The Stable Marriage Problem

Although rather dated, the classical problem is stated in terms of two equal-sized sets: a set of
N men and a set ™ women all of whom wish to get married to a member of the other set. Each
man independently creates an ordered preference list, ranking eaciNofitimeen. Each woman
does the same, ranking each of fhmen. The aim is to find stablematching between the set of
men and women so that each man is matched to a woman and each woman is matched to a man. A
match isunstableif there is a couple who are not matched to each other, yet both prefer the other

to their partner in the matching.dablematching is any matching that is notstable

4.2 The Gale-Shapley Algorithm

In their original paper, Gale and Shapley prove that:

1. Every instance of the stable marriage problem admits at least one stable matching.
They prove this with an algorithm, GSA, that will always find a matchir@ (iN?) run-
ning time.

2. The GSA has two distinct versions: the male-optimal GSA and the female-optimal
GSA. The male-optimal GSA will simultaneously give all the men the best partner and
all the women the worst partner that they could have in any stable matching; and vice-
versa for the female-optimal GSA.
The Gale-Shapley Algorithm is usually expressed in terms of a series of marriage proposals.
In the male-optimal version, the proposals are always from men to women. We will describe here
the male-optimal version of the algoritinmitially, each person iseeand may becomengaged

as the algorithm progresses. Women who become engaged never become free again, whereas

engaged men may be rejected by their partner and become free again.

1. The female-optimal algorithm is obtained by simply reversing the roles of the sexes.
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Each man proposes to the women, one at a time, in the order that they appear in his preference
list. If the woman that he proposes to is free, she will accept his proposal. If she is already
engaged, but prefers the new proposal, she will reject her previous partner in favor of the new
man. The rejected man is now free and will resume making proposals to the remaining women in

his preference list. The algorithm terminates when everyone is engaged.

The somewhat surprising findings of Gale and Shapley were that the algorithm will always
converge before any man reaches the end of his preference list, and that on completion of the algo-

rithm the engaged couples always form a stable matching.

4.3 Analogy to Switch Scheduling

A stable matching is an example of a bipartite graph matching. As described in Chapter 1,
scheduling cells in an input-queued switch is analogous to finding a bipartite graph matching
between the set of switch inputs and outputs. So if, for example, we assign the set of men to repre-
sent the switch outputs and the set of women to represent the switch inputs, a stable matching will

represent a legal switch configuration.

Next we shall consider the principle ways that the GSA differs from the iterative algorithms
discussed earlier in this thesis. We then describe two algorithms, GS-LQF and GS-OCF, that are

based on the GSA and may be used for scheduling cells in an input-queued switch.

There are three main ways in which the GSA differs from the iterative maximum weight algo-

rithms described earlier in this chapter:

1. A stablematching is in general different from a maximum sized or maximum weight
matching. It is not clear that a stable matching will lead to an efficient use of switch band-
width, or that it will prevent connections from being starved of service. In particular, we
know that the GSA will favor either outputs or inputs. Later, we will consider an algo-
rithm that provide a more egalitarian matching.

2. The stable marriage problem and the GSA are usually defined for a complete matching
in which every input and every output is matched. It is not always the case in an input-
gueued switch that a complete match is possible: most often, only a subset of the input-
gueues are occupied. This means that some inputs and outputs will have missing entries
in their preference lists. Fortunately, with a small modification, the GSA algorithm will
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still work.X However, it is known that just a few missing elements in preference lists can
lead to a large reduction in the size of a stable matching [15].

3. In the iterative algorithmisSLIP,i-LQF andi-OCF, once a connection has been

accepted it is not rejected by a later iteration. In the GSA, connections made in one itera-
tion may be rejected by a later iteration. In principle, by rearranging connections the GSA

can find a larger sized or weight match than iterative algorithms that do not remove con-

nections established in an earlier iteration. The benefit of this is not clear: in (1) above we
saw that the stable matching does no attempt to maximize either the size or the weight of
a match.

4.3.1 The GS-LQF Algorithm
GS-LQF (GSA with LQF preference lists) is the Gale-Shapley algorithm with preference lists

based on the occupancy of the input queues.

Outputj determines its preference IR (j)  based on the occupancy of eachhfrthet

queuesL (i,j),0i 01

Ro() = [igiy .ip], whererL(ip,j) 2L(i,])) 2...2L (I, ])- (10)
Similarly, inputi determines its preference list
Ry (1) = [ipdp -nipl, whererL(i,j;) 2L (i,j,) ... 2L (i,j) (11)
4.3.2 The GS-OCF Algorithm

GS-OCF (GSA with OCF preference lists) is the Gale-Shapley algorithm with preference lists

based on the waiting time of the cells at the head of each input queue.

Outputj determines its preference IB{, (j) based on the waiting times of the cells at the

head of each of thd input queuesW (i, j), Oi O |

Ro () = [igin cooripd, Where:W(ip, ) 2W(inj) 2 ... 2W(ip, i) - (12)

Similarly, inputi determines its preference list

R (i) = [igip -ipd, Where:W(i,j,) 2W(ij,) 2...2W(i,j) . (13)

1. It may be shown that the algorithm will partition the inputs and outputs into those that are matched in all stable
matchings and those that are never matched [15].
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4.4 Performance of GS-LQF and GS-OCF Algorithms

The performance of the GSA depends on the weight of the stable matching. In general, the
relationship between a stable matching and a maximal weight matching is unknown. In fact, it is
not intuitively obvious that a stable matching algorithm will perform well in this application, par-

ticularly when several of the input queues are empty.

Surprisingly, we have found through simulation that the performance of the GS-LQF and GS-
OCF! algorithms are, respectivelpdistinguishableérom the performance #fLQF andi-OCF. It

remains an open problem whether the performance is identical for all traffic patterns.

4.5 Implementation of GS-LQF and GS-OCF

We now describe a parallel, iterative version of the GSA to match inputs to outputs in an
input-queued switch. The algorithm is relatively simple to implement in hardware, although more

complex than theSLIP algorithm described in Chapter 3.

Figure 4.10 shows the schematic design of GS-LQF which is almost identical to the imple-
mentation ofi-OCF in Figure 4.10. As withLQF, the design consists of 2N arbiters. Each grant
arbiter maintains a register value for each of the requesting input queues. For GS-LQF, the regis-
ters at outpuf maintain the preference list: the occupancy values for each input dig(p, in
Equation 11. Similarly, the registers at inpumaintain the elements dr, (i) . The Finite State
Machine controls the preference lists at each arbiter by enabling only those that are active in a par-

ticular iteration.

In the first iteration, all of the entries in the arbiters’ preference lists are enabled. Each output
will grant (“propose”) to the input which makes the largest request. For example, in Figure 4.10,
grant arbiters 1 andboth grant to input Grants are single bit values, used to enable entries in an
accept arbiter’s preference list. The input may or may not have already accepted a grant. If it has
not, then it accepts the largest enabled entry in its preference list. If it has, then it only accepts the

new value if it exceeds the value of the previously accepted grant.

1. Our simulations only considered the output-optimal algorithms.
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FIGURE 4.10 Implementation of NxN GS-LQF algorithm using 2N arbiters. For brevity, only grant arbiterj; 1 and
and accept arbiters 1 ahdre shown here.

As with the implementation dfLQF the complexity of the implementation of GS-LQF
depends on the number of bibs,used to represert, j(t) . This will determine the number of
gates required to register the preference 1BtshN?) and the number of gates required to imple-

ment each comparatdd (log Nlog b)

4.6 Egalitarian Stable Marriage

In [15], the authors describe an algorithm to find an egalitarian stable marriage. Whereas the

male-optimal GSA simultaneously:
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minimizes g R, (m w), and
(m, oM

(14)
maximizes R, (W, m)
(mw) OM
the egalitarian stable matching
minimizes % [R,(mw) +R, (w,m], (15)
(mw) OM

where:
R, (M w) =the position of womaw in manm's preference list,
R, (W, m) = the position of mamin womanw's preference list.

If we could use this algorithm to schedule cells, it would remove the decision as to whether to
give preference to either inputs or outputs. Unfortunately, the best known algorithm for finding an
egalitarian matching requires &n(N%) running time and is impractical to implement in hard-

ware.
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APPENDIX 1

Arbiter Synchronization for
Single-lteration SLIP

In this appendix, we find an approximate expression for the expected number of synchronized

output schedulerss [ ()]

We patrtition the set of switch inputs= {1, ..., N} into two subsets at tinAdgt): , the set
of inputs that are matched aBdt) , the set of inputs that are not matched. If the arrival rate aver-
aged across all inputs »s then for a sustainable and stationary ergodic arrival process the
expected match size BN and on averad¢, inputs will send a cell. Clearly then, the expected

size of A(t) andB(t) are

E[IA®I] =AN , E[IB®I] = (1-A)N=AN. 1)
Similarly, we partition the set of switch inpu® = {1, ..., N} into two subsets at time t:

AS(t)andBO(t). AC(t) is the set of outputs that are matched to inpuég(tyy andB©(t) are the out-

puts not matched at time t.

As a result of the matching at time t, the Aét) is transformed into tlﬁe(tseﬂ) , the set of

inputs that the outputs iho(t) point to at time t+1. Each elementA{t) is unique, and because
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’4 A(t) B(t) >‘

Bo(0) B, (1)

I | I
A(t+1) | I§(t+1)

FIGURE Al.1 Mapping of matched and unmatched inputs atttitmenodified sets at tinte-1.

they were matched at time t, each element mapped A@in ,&i(ttﬁ 1) is also unique. The

expected size o;\(t +1) is

E[At+D)] = E[JA® = E[JA®I] = AN. @)

Because none of its elements are matched, th&(get is unchang!:e(d,ﬁ.ﬂe) = B(t)

To determineE [(t+ 1)] , the expected number of synchronized output arbiters at time t+1,

we must find the number of elements,&l(lt +1) that are still unigue and the number that clash

with elements mapped frol(t) . Without loss of generality, and to simplify our calculations, we
assume that a one-to-one mapping is applie,él(tor 1) suchft(laf 1) = A(Y) and hence
é(t + 1) # B(t) . As before, the elements &f(t +1) are unique, and we can think of the elements

of I§(t + 1) as randomly distributed overThis is shown in Figure Al.1.

To find E[(t+ 1)] , we partitionB(t) intdB,(t) elements that are mappedﬂ((lm 1) , and

B, (t) elements that are mapped irﬁ(x +1)
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Finally, we definel ,(t + 1) andlg(t+1) as the number of unique elemem‘é\a‘m 1) and
é(t +1) respectively, and

E[t+1)] = N-E[U,(t+1)] —E[Ug(t+1)] . (©))

If we assume that under the mapping the elemeritdf unéfiarmly distributed inl, then

E[Upt+D)] At + 1), Bo(®]= At + 1) A+ D] - 1%‘30(0

A+ 1)

O E[Upt+D)| B By®] = (N-[BQO)) [B(N(rglig)(lt))n_l%mn_Bl(t) (4)
and,

E[Ug (t+1)| B, B,(]= B,) EH%%BIG)_J- 5
O E[UB(t+1)| |B(t)|,Bl(t)]: B, (1) EH%}%Bl(t)—l (5)
Hence,
E[S(t+1) ] [BO), B,®)] = o

N—|B(t)|) —1BM®I-B,(® B(t) —1B,®-1
- (n- B R B - cHRR T

To find E[S(t+ 1)] we need to know the distributions|B{t)] ~ a&dt) . Unfortunately, both

random variables depend on the traffic arrival pattern. Furthermore, we cannot use Jensen’s ine-

guality to bound Eq. 6 from below or above. This is because Eq. 4 is a concave function of

|B(t)| andB,(t) whereas Eq. 5 is convex.

However, simulations with a variety of arrival patterns indicate E{eg8( t+ 1)] is relatively

insensitive to traffic statistics. We therefore approximate the random variables with

B =E[IB®I] = AN andB,(t) =E[B,®)] = AN
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This leads us to the approximation,

AN — 1[AAN AN —1[R°N-1

E[al)] :N—)\ND—XN—D _XZNWD . (7)
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APPENDIX 2

Stability of Single-Iteration
SLIP Algorithm

L(n

FIGURE A2.1 2x2 switch with a single queue.

1 Single-Step Drift Analysis of 2x2 Switch with 1 Queue

1.1 First Approximation
Consider the switch in Figure A2.1. All three arrival processes are i.i.d. Bernoulli. We wish to

find the values ok, £, ande, for which the switch istable

Define L to be the expected valueldh + 1) (the occupancy of Q(1,1) anhtihecondi-
tioned onL(n) and_(n) >0

L = E[L(n+1)| L(n),L(n)>0] . (1)
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If L—L(n)>0 then L(n) has a single-step positive drift which means fhpt(n)] — o

and the switch is unstable.

This system may be described as a discrete-time Markov chain (DTMC) with state

X = (9pa) )
where L is the occupancy €)(1, 1) , the value of the poigteat output 1, and the value of
the pointera; at input 1. The evolution of state for the switch using the SLIP algorithm, condi-

tioned onL(n) >0 and = 0 is shown below
0181

? L (0, 0) 1 L-1 (0, 0)

- - €1 81

el |y L1 2 110,1) |2 = = =
L (1, Oyse— 1= L-1 (1, 0)

€18 €18 - -
L (1, 1) €18 L-1 (1, 1)

where g, =1-¢,,&,= 1-¢, . The state transition matrk,conditioned orL (n) >0 and

A=0is

0O 0 0 1

0 0O ¢
P = (3)
, 0 0 &

€185 E18; €18, €48

from which we obtain the steady-state distribution

1
1+&,e,+€.8,+€.8,(1+E +E))
1,0 = g5, 01L, 1, 1) (4)
n©, 1) = ge,01L, 1, 1

ML, 1 =

Frommtwe find
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L =Ln- [ 1 } ©)

1+g.e,+e.8,+e.8,(1+E +E))

which if we consider the arrivals at rat@ivesJ, the expected single-step increase function

sz—[ L } (6)

1+ 2 +g2—2¢3

where we define =€, = €, because of the symmetric and identical dependeacanzh

5. The unstable region of operation is given by

)\>[ 1 } (7)

1+2e+82-2¢3
We can find the maximum positive drift, .. (the “most unstable operating point”) by defin-
ing
A =1-g-9, o<1 (8)

From Eq. 6 we find thalmaxi =0.098 which tells us that the drift can be positive for any
5=0

value ofd <0.098, or alternatively

J>00 A+e>1-0.098 ©)

1.2 Second Approximation

The first approximation assumes that cells arriving at egteade, are discarded if they are
not successfully scheduled. However, if unsuccessful cells are queued rather than discarded, they
will affect the service rate dP(1, 1) over multiple cell times. We model this effect by approximat-
ing thebusyandidle cycles of input queue®(1,2) ar@2,1) with a 2-state Markov process,

shown in Figure A2.2.

The behavior of)(1, 2) an@(2, 1) may be modelled by an M/G/1 queue with an arrival rate

A, and service rate— %)\1 . From [43] the expected duration of the busy and idle cycles

1 p
E[B] = = (10)
Dl—l-)\ D_)\ 1_p
2% "2

E[I] = Xl- = —l—g—a (11)
2
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L(n
AN — >
M(n)
M(n)
@)
M/G/1
)\2 — —

(b)

FIGURE A2.2 (a) Approximation of arrivals as an on-off process modulated by a 2-state discrete-time Markov chain,
M(n). (b) The arrival process models the busy/idle cycles of input queues Q(1,2) and Q(2,1). (c) The Markov chain
alternates between the busy and idle states. In the busy state, the arrival rate is 1. In the idle state the arrival rate is 0.

from which we obtaimp andq as functions oh; andA,.
To find
L = E[L(n+1)| L(n), L(n) > 0] (12)

we model the evolution of the system using a DTMC with state

X = (95,285,858 (13)
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wheres is the statebusyoridle) of the 2-state DTMC modulating the arrival process at input

i. The state 16x16 transition matrix is

n

s.s,=(B,B) (B (L,B) (L)

00 01 10 100 0110 1100 0110 1100 01 10 il_
. 00 , P pp| s/ pp
oo PP pp pp
o pp pp pp
P= | = 1l _pp pp pp (14)
~ 00| _ pq paj__ pa|_ pq
= (1)(1) P _|pa pq pq _
S og ™ ocPd 5P 5qPd
= 00 P pq pq pq
. 01 _ pq paj pal P
= 1o/pda  _ | pq pa __ |pa _
1 Pd_| P Pq Pq
~ 00 q qq qaq o
- 01 97 qq qq q2
~ 10 q qq qq q
11 e qq qq 9
from which we find the steady-state distribution
n= (n(B, B O0,0.. 7l 11) . (15)
For brevity, we show an example of just one element of the distribution
(B, B, 0, 0) = p(a-1)2(p?g2—pq? + p3q—3qp® + 5pq—29 —p3 + p>—3p + 2)
C T (a%p + p2a?-3q%p + g% + ptq— p3q—p3q - 2qp? + 7pg—-3q—p* + p3 + 2p2—3p + 3) (q-2+p) 2
(16)
We findL frommand the expression
L = L(n)— [T(B, B,0,0) + (B, 1,0, 0) + (I, B, 0, 0) + (I, 1, 0, 0) +T(B, I, 1, 0) (17)

+11,B,0,1) +7(,1,0, ) +7(l,1,1,0) +7(l, 1, 1, 1)]

This leads to an expression for the single-step drift fundtas the ratio of two 10th degree

polynomials. As a result, we have only been able to find the conditiokhsandA, numerically

such that] is negative and the switch is stable.
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2 Matrix Geometric Solution for 2x2 Switch with 1 Queue

Consider again the switch in Figure A2.1. In this section, we find the steady-state distribution
function for the queue occupancy, L and find the valuesaride necessary for stability. To do

this, we use the matrix-geometric technique of Neuts [36]. We define the state
X = [Xg Xy X o] (18)
whereX, = {(L,9;,2,):9,0{0,1},a,0{0,1}} and wish to solve the infinite sys-

tem of linear equations

n

I
-
v
3
)
I
H

(19)

where

n= [DO, o, 0, 1, 0, = steady-state distribution o)_(i, (20)

eis the column vector with all its elements equal to 1, and the transition probability matrix is
of the form
By Ay O -
By AL Ay - _
82 A2 A1

0
1

(21)

In this examplej5 is most easily understood when separated into two parts, conditioned on

whether or not an arrival occurs

P = APy + AP, (22)
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where I5A and5‘x are

0
>

00 01101

DO 01101

100 0110 11

=

,_____
mimimi
)

L=0
00 01101

L=1
DO 0110 1

L=2
00 0110 11

______

_______

Clearly, P is of the form of Eqg. 21.

_______

To find the steady state distributibinwe use Lemma 1.2.3 and Theorem 1.2.1 of [36}. If

positive recurrent, then we can find (using a method outlined on page 9 of [36]) a uniqué&matrix

which satisifies the equation

R= Y RA
k=0

such thafl, , , = O,R fori 20 , the spectral radiusRafsp(R)<1, the matrix

B[R = ¥ R'B,
k=0

, WhereA, is as shown in Eq. 21.

(23)

(24)
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is stochastic,

0,(—-R) ‘e = 1,and (25)
N, = O,B[R . (26)
Alternatively, for the Markov chain to be positive recurrent (i.e. for the system to be stable) it

is necessary that the spectral radiuR bk less than 1.

Solving forR andB[R] we obtain

0 0 0 0
1-2eN+ 282X (1—g€)eA (1—g)eA l}\T}\
REGEN | oene2e2h  (1-6)eh (1-g)e 1%\ 27)
€(83-26-2\+2e)\) 1-¢ l-¢ )\(2+8_2812__)\28)\+282)\)
1-A 0 0 A
B[R] = €(1-A) 1l-e—-A+eA 0 A . (28)
€(1-2) 0 l-g—-A+eA A
€2(1-7) (1-g)e(1-A) (1-€)e(1-A) 1-2c+€2+2eh—€2\
where
eA
€A = . 29
9(e ) (1— 2\ —g2\ + 283\ + 26202 - 2¢3)\2) (29)
The spectral radius
sp(R) <1 )\<[ 1 } (30)
1+2c+g2-2¢3
which is identical to the stability requirement of Eq. 7.
We can also solve Eq. 25 and Eq. 26 above toffigd . The resulting expression is a vector of

elements, each of which is the ratio of two 6th order polynomiasaimdA from which we can

successively generafé,, [1,, 15, ... . We do not repeat these (long) expressions here.
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APPENDIX 3

Stability of 2x2
Switch

1 Stability of 2x2 Switch with 3 Active Flows (Theorem 4.2)

In this section, we find sufficient conditions on a scheduling algorithm for a 2x2 switch with 3
active flows such that the switch is stable under all admissible, arrival processes with i.i.d. interar-

rival times. The switch is illustrated in Chapter 4 Figure 4.6.

1.1 Definitions

Define the vector of queue occupancies

L) = (Ly o0, Ly AN, Ly 4() . (1)
We now consider the single-step changé(m) conditioned on whether the switch is in con-

figurationA or B, as shown in Chapter 4 Figure 4.6:
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L]_’ 1(n+1) = [L]_, 1(n)_1] ++n1%

le J(n+1) = L1, (N +n, EConfigurationA
Ly 4(n+1) =L, 4(n)+ng H

2
Ly n+1) =Ly 4(n)+n, O

0
Ly n+1) = [Ly [m-1]"+n, EConfigurationB

sz 1(n+1) = [Lg‘ 1(”)_1] ++713 U

where

(1, if an arrival occurs at queue i, w.p,

' [, else
We define the quadratic Lyapunov function
V(L) =LMTQL(N =0, whereQ = [q;], q;20. 4)

1.2 Problem statement

If we can find &Q suchthatE[V (L(n+1)) =V (L(n))| L(n)] <O , then the queue occu-

pancy has a downward drift and the switch is said tstdae

1.3 Solution

As there is no systematic method for findig we must guess its form. We assui@e that is
symmetric, i.e.[qij] = [qji] . Further, we guess that if the switch is stable under all admissible
offered loads, then it will be marginally stable when= A; =1 and= 0 .i.e.

E[V(L(+D) =V (LM) | L), A, = Az =12, =0] = 0. 5)

This leads us to the guess

42
Q = a|2 1 1/, foranyintegera. (6)

21

This matrixQ leads to a stable switch under the following conditions.
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Conditioned orLL 1(n) >0, Ll, »(n) >0, L2, 1M >0 :

E[V(L(n+1)) =V (L) | L(n),A] = (=2+2A; +\, +A,)
(=2+ 20+ N, + A5 +4Ly () +2L, ) +2L, 4(N) (7
<0

E[V(L(n+1)) =V(L(M) | L(n),B] = (—2+ 2\ +A,+],)
(=2+ 20+ N, +Ag+4Ly () +2L, Hn) +2L, 4(N) (8)
<0

Similarly, conditioned on eithdr, n) = 0 dr, ,(n) =0

E[V(L(n+1) -V(L(M) | L(n), A] <O (9)

whereasE [V (L(n+ 1)) =V (L(n)) | L(n), B] maybe greater than 0
Finally, conditioned ort.; ,(n) = 0 :

E[V(L(n+1)) -V (L(M)| L(n), B] <0 (10)

whereasE [V (L(n+ 1)) =V (L(n)) | L(n),A] >0 .

1.4 Stable Algorithms

The value 0fQ above enables us to define the following algorithm that will be stable under all

admissible traffic with i.i.d. arrivals for a 2x2 switch with three active flows:

1. If L, 4(n) = O, set crossbar to configurati@n

2. Else, if eithel; ,(n) = 0 ot, ,(nN) = 0 , setcrosshar to configuration

3. Else, set crossbar configuration to either B.

2 Relative Queue Sizes (Theorem 4.3)

In this section we prove that if or any arrival process to a 2x2 switch, if forisome

{Ly 4+ Ly 5} = {Ly o)+ L, (M} |<3 (11)
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FIGURE A3.1 All possible single-step increasegin(n) | . Arrows marki:}.—F require two arrivals, which
means that both queuesli, (n)  are non-empty in the next cell time.

then for alln' = n

{Ly 4(M) +L, M)} = {Ly M) +L, ()| < 4. (12)

For convenience, define

La) = Ly M +L, ) Lg(n) = Ly fm)+L, 4(n) (13)
and assume without loss of generality thafn) = L 5(n) , i.e.
La(n) = Lg(n) + D(n) (14)

forsome D(n)=0 .

Finally, define

Ly = max(L,(n), L(n) (15)
L.(n) if L,,(n) = Lg(n
. ALy = Lgm) -

Lgn) if Ly,(n) = L)
Theorem A3.1:All possible single step increases| (n)| are shown in Figure 3.1.

Proof:
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Case (i): D (n) = 0. First we consider all possible valuesbfn + 1)| when
D(n) = 0,i.e.L,(n) = Lg(n) . We shall assume, without loss of generality that the two

queues that contribute to,(n) ~ are served at time

At most two cells can arrive to the switch in a cell time, which means that

DO : 0 arrivals
Lg(n+1) = Lg(n) + Bl 1 arrival a7)
2 2 arrivals

and that at most two cells can depart from the switch in a cell time, which means that

72 :(2dep.and O arr.),
Ln+1) = L)+ B—l :(2dep.and 1l arr.),or (LdepandO ar_r.)
00 :(2dep.and 2arr.), or (1dep and 1 arr.)

1 :(1dep.and2arr.),or (Odepand1larr.)

(18)

Note that there can only be 0 departurek jfn) = 0 and only 1 departure if either
L1, 1(n) =0or L2, Jn) =0.

From Eq. 17 and Eg. 18 we find the following possible increBges tgn= 0

Bl D (LA(M) - La(M) =1), (Lg(n) - Lg(n)
2 (L) - Ly(n)=1), (La(n) — Lo(n) +1

D Dl = B (La(M) = La(n) —1), (Lg(n) - Lg(n) +1) 19)
%31 (La() - LA(M) =2), (Lg(n) - Lg(n) +1)

4 :

(LA — La(M)=2), (Lg(n) - Lg(n) +2)

Note that|D(n)| = 4 if and only if two arrivals occur. This means that both queues that

contribute toL,(n + 1) are non-empty.

Case (ii)-(iv): |D(n)] = 1, 2, 3. By enumerating all transitions, as f@(n)] = 0 , we
find the transitions from 1, 2, 3 in Figure 3.1.

Case (v): ID(n)] = 4. In cases (i)-(iv) we found that transitions if(n)| = 4 require
that two arrivals occur and that both of the queues that contribute(t when
|ID(n)] = 4 are non-empty. As a result, the matching at tinserves two queues, hence
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Lyn+1)<L,,n). (20)
L(n)is not served and so cannot decrease, therefore,
L (n+1)=L (n). (21)

Finally,

ID(n+1)| <4 (22)

The transitions in Figure 3.1 indicate

1. For any queue occupancy such txn)| < 3 , the next state is bounded by
ID(n+1)|<4.

2. If [D(n+1)| = 4, then both queues ip,,(n+1) are non-empty.

3. If both queues i, (n) are non-empty din)| = 4, thBfn+1)[<4

Hence, if for some, |D(n)| < 3, then for alin’ > n ,|D(n")| <4 which proves the theorem.
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APPENDIX 4

Stability of NxN Switch

with 1.1.d. Arrivals

1 Definitions
In this appendix we use the following definitions forNaiN switch:
1. The state vector, representing the occupancy of each queue @t time
L) = (Ly o) Ly (@ Ly 1), Ly () 1)
2. The (constant) arrival rate matrix:

N N
[)‘i,j]’ where: Z )\i,j <1, z )\i’j <L,A .20 (2)

7AN ij
i=1 i=1

and associated rate vector:

A= (A g A g e Ay 1 oo Ay ) - (3)

3. The arrival matrix, representing the sequence of arrivals into each queue:

1 if arrival occurs aQ(i, j) at timen
0 else

A(n) = [Ai’j(n)], where: Ai’j(n) = { 4)

and associated arrival vector:



APPENDIX 4 Stability of NxN Switch with i.i.d. Arrivals

116

A(n) = (Al, 1(n), ""Al, N AN’ (N, .., AN' N)-

4. The service matrix, indicating which queues are served antime

1 if Q(i, ) is served at timen

S =15,;O],  where:S ; () = { e

andS(n) OS, the set of service matrices.

N N
Notethatzz Slj(n) = Z Slj(n) =1
i=1 j=1

and henceS(n) 0 S is permutation matrix

We define the associated service vector:

SN = (Sy 40, -, Sy (M) o Sy 1(N)s s Sy (M),

hence|S(N||2 = N .

5. Theapproximatenext-state vector:

Lin+1)=L(n)-S(0+A®N) ,

which approximates the exact next-state of each queue
L+ D) = [ ) =S ;01" +A 0.

2 Main Theorem

Theorem A4.1:An NxN switch is stable for the LQF algorithm under i.i.d. arrivals.

3 Proof

Before proving this theorem, we first prove the following theorems.

()

(6)

(7)

(8)

(9)
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Theorem A4.2: The doubly stochastic matriced, , form a convex@et, , with the set of

extreme points equal to permutation matrices,

Proof: The setC is clearly convex: for all rate matriges A, 11 C and for every real num-
bera, 0<a<1,the poinbA; + (1-a)A,0C . Apermutation matr& is doubly stochastic
and is therefore a member of the €&tFurthermore, there are no two distinct matrices
Ay A, 0C such thataAy + (1-a)A, = S, forreatr, 0<a<1 . Hence, a permutation

matrix is an extreme point & [

Theorem A4.3: LT(NA-S'(N)<0, O(L(n),A), whereS'(n) = maxLT(n)S(n) , the

service matrix selected by the LQF algorithm to maxirbiZ@)S( ) .

Proof: Consider the linear programming problem:

max(LT(n)})
N N (10)
s.t. z A=l Z AijsLA ;20
i=1 ji=1

which has a solution equal to an extreme point of the conveg€set, . Hence,

max(L T(n)2) < max(L T(n) (1) (11)
and soLT(N)A —maxLT(n)§() <0 [
Theorem A4.4:E[LT(n+ 1)L(n+ 1) —~LT(n)L(n)| L(N)] <2N, OA.
Proof: - ~
LT(n+1)L(n+ 1) -LT(n)L(n)
= (L(n) -0 +AM) T(L() — (N + A(n)) —LT(n)L(n)

= 2LT(n) (A(M —S(A) + (SN —AM) T(S(H —A(N)
= 2LT(n) (A(M —S(1) +k,

(12)

where0<k<2N .k=0 becaus&n—-A(n is areal vector, akhd2N because
IS(A - A(n)|2< 2N.
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Taking the expected value:

E[LT(n+)L(n+ 1) -LT(n)L()| L(M)] < E[2LT(n) (A(N) -(N)] + 2N

(13)
= 2LT(n) A -S'(n)) +2N.
From Theorem 4.4 we know th&LT(n) (A—=S'(n)) <0 , proving the theorém.
Theorem A4.5:E[LT(n+ 1)L(n + 1) ~LT(n)L(n)| L(n)] <—¢|L(n)] + 2N, £>0,
OA< (1-B)A,, 0<B<1,where)  is any rate vector such t|’H@'m||2 =N
Proof:
LT (A-S' () <LT(n {2, ,-S' (M} -LT(n) (BA,) 14)

<O0-BIL (Ml OA | cosd

where6 is the angle betweeln(n)  akd

We now show thatosB >d for som®>0 whenegn)#0 . First, we showdbsd > 0

We do this by contradiction: suppose tleasd = 0 |, Lén) and  are orthogonal. This can

only occur ifL(n) = O, or if for some,] , both, j = 0 ard j(n) >0 , which is not possible:
for arrivals to have occurred at queQg, j) A, ]. must be greater than zero. Thezefire, 0
unlessL(n) = 0 . Now we show thabst is bounded away from zero, i.ectst> o for some

6>0.BecauseA; ;>0 wherevér, ,(n)>0 , and becalips N

LTm2 _ tmad™MAmin

cosH = > , 15
Lo~ JLml /N 49
whereA . = min()\i,j,lsi,j <N) and. (") = max(Li,j(n), 1<i,j<N) . Also,
ILm)ll < [N2L2 (m]Y2 = NL (1), (16)
and socosB is bounded by
cosh > —min (17)

NJ/N
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Therefore

~ ~ A
E[LTn+ DL+ 1) -LTLM)]| LM)] <- %‘numn +2N.O (18)

Theorem A4.6:E[LT(n+ 1)L(n+ 1) —LT(n)L(n)| L()] <—¢g[L(n)] +N2+2N, >0

0 A< (1-B)A (), 0<P<L.

Proof:
- M ifLij(n)zo,Slj(n)zl
Li‘j(n+1) =L jin+)+ 0 ’ ’ : (29)
else
therefore
LT(n+)L(n+ 1) —LT(n+ 1)L(n+ 1) < N2, (20)
and so

E[LT(n+ LM+ 1) -LTMLM)|LM)] <E[LT(n+ )L+ 1) ~LT(MLM)|LM)] +N2. (21)

Using Theorem 4.5 this concludes the praof.

Theorem A4.7:There exists &/(L(n)) s.E[V(L(n+ 1)) —V(L(n)|L(n)] <—¢|L(n)] +k

wherek, €>0 .
Proof: V(L(n)) = LT(n)L(n) andk = N2+ 2N in Theorem 4.8
We are now ready to prove the main theorem.

Proof of Main Theorem: V(L(n)) in Theorem 4.7 is a quadratic Lyapunov function and,

according to the argument of Kumar and Meyn [27], it follows that the switch is diable.



