
Packet Scheduling in Optical FIFO Buffers
Neda Beheshti, Yashar Ganjali

Computer Systems Laboratory
Department of Electrical Engineering, Stanford University

{nbehesht, yganjali}@stanford.edu

Abstract— Recent advances in optical technology show the
possibility of building all-optical buffers in the near future. These
buffers are usually composed of a number of fiber delay lines
(FDLs) and optical switches. Incoming packets are stored for a
limited time by going through optical delay lines. Optical switches
transfer these packets among different delay lines, or send them
towards the output line if a packet is to leave the system. As a
direct consequence of using optical technology, one of the major
constraints in this setting is that the size of switch needs to be
small.

In this paper, we show the feasibility of constructing a FIFO
queue of size N by using only O(log N) 2x2 switches. A simple
scheduling algorithm that achieves this bound is developed. The
proposed structure provides an efficient way of storing optical
packets using a minimal number of delay lines and switches.

I. INTRODUCTION

Packet-switched communication networks need buffers for
resolving contention among packets that compete for the same
link. In all-optical packet switch designs, fiber delay lines
(FDL) are commonly proposed as a means of delaying optical
packets, and hence storing them during times of contention.

In this paper we propose an optical FIFO architecture for
buffers in which the departure time of packets is not known in
advance – as in input queued switches. The presented scheme
achieves a buffering capacity of N packets by using only
O(log N) 2x2 optical switches. This has been shown to be
the lower bound on the size of required switches [8].

The work is mainly motivated by the recent results that
show the ability to make small onchip optical packet buffers
[6], and suggest that this small onchip buffering suffices for
resolving packet contention in the core routers [4], [7]. These
results raise the question of finding the maximum buffering
capacity that can be achieved by using only a small number
of integrated optical switches.

The framework we consider in this paper is for exact
emulation of a FIFO queue, i.e., for any arbitrary sequence of
arrivals and departures, the scheduling algorithm guarantees
that the system has exactly the same departure and drop
sequences as its equivalent FIFO queue. What makes the
delay-line based design of optical FIFOs challenging is that
the arrival and departure time of packets are not known in
advance.

There have been many schemes proposed for buffering
optical packet buffering . Almost all of the schemes involve
using a system comprised of an optical switch and one or more
fiber delay lines to delay the packets for a certain amount of
time. Fig. 1 shows a schematic of this system where an optical

delay line

arrival departure

L

Fig. 1. An optical buffer composed of a delay line and a 2x2 switch.

delay line of a fixed length L is coupled with a 2x2 optical
switch. An arriving packet can either be transferred to the
departure port directly, or it can be switched into the delay
line and recirculate in the loop for a number of times before
departing the system.

Clearly, a FIFO queue of size N can be built by concate-
nating N delay loops, each capable of holding one packet.
A consequence of using optical technology, however, is the
constraint it imposes on the size and the number of optical
switches used in this setting. The challenge is to find a
structure that works with a smaller number of switches, and
yet has the same buffering capacity. More specifically, the
question we address in this work is the following: Given that
a fixed-length delay line can generate only a certain amount
of delay, what is the minimum number of delay lines required
for emulating a FIFO structure, where the buffering duration
of packets is not known in advance?

Our results show that the buffering capacity of an optical
FIFO architecture can grow exponentially with its size. In
other words, the proposed scheduling algorithm requires the
number of delay lines, or equivalently the number of optical
2x2 switches, to grow only as the logarithm of the number of
packets in the buffer.

A. Related Work

The problem of constructing optical queues and multiplexers
with minimum number of optical delay lines and optical
switches has been addressed in [5], [1], [8], [2], [3]. In a
FIFO multiplexer the departure time of packets is known upon
their arrivals, whereas in a FIFO queue, the departure time
can not be determined in advance. In [8] it is shown that
for emulating any priority queue of length N , the minimum
number of required delay lines is O(log N). A construction
which achieves this emulation by O(

√
N) delay lines is

presented.
Recently, C.S. Chang et al. proposed a recursive approach

for constructing optical FIFO buffers with O(log N) delay

63

U.S. Government work not protected by U.S. copyright



lines [1]. The proposed construction, however, needs to keep
track of the longest and the shortest queues in each step of
the recursion.

II. BUFFERING ARCHITECTURE

In this section we present a buffering architecture which
consists of 2logN − 1 delay lines of fixed lengths, and is
capable of exactly emulating a FIFO queue of size N − 1 in
the following sense:

Exact emulation: system A is said to exactly emulate
system B if by applying the same sequence of arrival packets
and departure requests to both systems, the output and drop
sequences in system A will be indistinguishable from the
corresponding sequences in system B.

Without loss of generality, In all our analysis and proofs we
assume N is a power of 2, unless otherwise stated.

As depicted in Fig. 2, the delay loops are of exponentially
growing lengths. In this figure, the delay loops are shown as
straight lines for the sake of presentation. Each Delay line
comes with a 2x2 switch which connects it to the main path
between the arrival and the departure ports.

Incoming packets are buffered by going through a subset of
the optical delay lines. Upon an arrival request, the scheduler
decides if the arriving packet needs to go through the waiting
line first, or if it can be directly delivered to one of the delay
lines. As time progresses, optical packets in each delay line
move in the direction shown in Fig. 2 towards the head of delay
lines. At the end of each time slot, a scheduler determines the
next position of the head-of-line packets. The system directs
these head-of-line packets towards their scheduled positions
by configuring the 2x2 switches corresponding to each delay
line.

The waiting line W operates as a time regulator of the
arriving packets. Since the time interval between successive
arriving packets is not known in advance, the system uses this
waiting line to adjust the location of packets in delay lines.
When the system decides to direct an arriving packet to the
waiting line, it knows how long exactly the packet should be
kept there, before sending it out to one of the delay lines.
Packets leave W in a FIFO order. In what follows we first
show that this structure along with our proposed algorithm
can emulate a FIFO queue of length N − 1. We then explain
how the waiting line W can itself be constructed by log N −1
delay lines.

A. Packet Scheduling

The main idea of the scheduling algorithm is to place
the packets in delay lines consecutively, i.e., packets with
successive departing orders are placed back to back in delay
lines. This is in contrast with what is proposed in [8], where
arriving packets are allowed to fill out any available positions
at the tail of delay lines. In order to follow this rule, an arriving
packet can only be placed in a delay line if its preceding packet
has been in a tail position in the previous time-slot. Otherwise,
the system holds the arrived packet in W for a proper number
of time slots. The waiting time is equal to the time it takes for

the preceding packet to traverse the delay line it is currently
in, and gets switched to a tail position. During the waiting
time, all the arrived packets are kept in W in a FIFO order.

At a departure request incident, if the system is non-empty,
the packet with departing order 1 is delivered to the output
link. The algorithm is shown to guarantee that this packet is
always at the head of some delay line. The departing order of
every remaining packet in the system is then reduced by one.

Departure

D1

D2

1

3 2

Departure

D2

D3

3 2

7 6 5 4Delay
Lines

Packet Propagation

D Nlog

Arrival
Waiting Line (W)

p g

: Optical 2x2 Switch

Fig. 2. Emulating a FIFO queue using delay lines. The system regulates the
position of the arriving packets by passing them through a waiting line.

At the end of each time slot, the next positions of the head-
of-line packets are determined by the scheduler. The scheduler
decides whether to recirculate a packet in the same delay line
it is currently in, or to send it to a shorter delay line. This
decision is made independently for each head-of-line packet,
based only on the packet’s departing order as follows: in the
next time slot, the packet will be transferred to the tail position
of the longest delay line whose length is not greater than the
order of the packet. More precisely, if the head-of-line packet
has departing order k, then it will be placed in delay line
D�log k�+1. As will be shown later, this ensures that packets
are at the head of some delay line when their departing order
goes down to 1.

The same scheduling policy applies when the waiting time
of the head of line packet in W is decremented to zero: the
packet will be transferred to the tail position of the longest
delay line whose length is not greater than the departing order
of the packet.

The main result of the paper is stated in the following
theorem.

Theorem 1. Under scheduling algorithm A, the set of delay
lines Di and waiting line W can exactly emulate a FIFO queue
of size N − 1.

In the appendix we prove theorem 1 by showing that
Algorithm A satisfies the following three properties.
(i) Occupancy of W is always smaller than N/2.

(ii) There is no contention among head of delay line packets.
(iii) Packet with departure order 1 is always at the head of a

delay line.

64



Algorithm A- Packet Scheduling

1) arrival event
let k be the total number of packets in the system.
if k = N − 1 then

drop the arrived packet
else

denote by pk+1 the arrived packet and by pk its prior packet
in the system.
if pk is in W then

place pk+1 in W

else
waiting time← (h + 1) mod d, where d is the length
of the delay line which contains pk , and h is the distance
of pk from the head of the line.
if waiting time > 0, place the arrived packet in W .
Otherwise, place it in the longest queue with length smaller
than or equal to the order of the packet.

2) departure event
remove the packet with order 1 from the system, and decrease
the order of all packets in the system by 1.

3) scheduling the head of line packets
for i = 1, 2, ..., log N , move the packet at the head of Di to the
longest delay line with length smaller than or equal to the order
of the packet.

if (waiting time > 0) then
waiting − time← waiting time− 1

if (waiting time = 0) & (W is nonempty) then
remove the head of line packet from W . Place the packet in
the longest delay line with length smaller than or equal to the
order of the packet.

The first property is required for constructing the waiting
line W with logN − 1 delay lines. This construction is
explained in the next sub-section.

The scheduling algorithm must relocate head of line packets
in such a way that there is no contention for a given location,
i.e., at any time slot, at most one packet should be scheduled
to be switched into each delay line. Therefore, the second
property must be hold to avoid dropping packets after they
are admitted to the buffering system.

Finally, the last property indicates that the departure se-
quence will exactly follow that of a FIFO, without any delay.

The above properties guarantee that an arriving packet will
be buffered in the system as long as the total number of
packets in the system remains less than N . Moreover, the
packets depart in the same order they arrive at the system
each packet is delivered to the output link at the same time as
in the emulated FIFO system.

B. Constructing Waiting Line

To avoid future contention among head of line packets, the
scheduling algorithm does not allow any void places between
packets which have successive departing order. To achieve this,
an arriving packet is kept in the waiting line until its preceding
packet – in arriving order, or equally in departing order –

passes the tail of a delay line. We show that the waiting line
W can be constructed by log N − 1 delay lines, resulting in
a total of 2 log N − 1 delay lines.

In this section we explain how the waiting line W can be
constructed by log N fixed-length delay lines. As shown in
previous sections, W should be able to buffer at most N/2
packets, as our algorithm always keeps the number of packets
in the waiting line less than N/2.

Consider a group of delay lines D′
i, i = 1, 2, ..., log N −

1, where the length of the delay lines grows as
1, 2, 4, ...2(logN)−1, generating an overall delay length of N −
1. Upon the arrival of each packet to the system, the scheduler
knows how long the packet should be kept in W before being
transferred to one of the delay lines. Based on the availability
of this information we develop algorithm B in the following
way. When a packet p arrives to the system, and is scheduled
by algorithm A to be placed in W then

• Calculate the binary expansion of the waiting time of
p, i.e., the duration that p needs to wait in W before
moving to one of the delay lines {Di}. This determines
which delay lines from the set {D′

i} the packet should
traverse before leaving W ; if the ith bit in the binary
representation is non-zero, then the packet needs to
traverse delay line D′

i.
• Starting from the shortest line, when the packet reaches

the end of a delay line, place it in the next delay line
corresponding to the next non-zero bit.

Packet p leaves W when it traverses all the delay lines
corresponding to the non-zero bits in its binary expansion. A
waiting packet traverses any delay line of the set {D′

i} at most
once, and never recirculates in the same delay line.

III. CONCLUSIONS

The main result of this work is introducing an architecture
for building optical FIFO buffers. The proposed structure uses
a simple mechanism to control the location of the arriving op-
tical packets by by using only O(log N) 2x2 optical switches
which has been shown to be the lower bound on the size
of required switches. The buffering capacity of the presented
architecture grows exponentially with the number of optical
switches.

IV. ACKNOWLEDGEMENTS

This work was supported under DARPA/MTO DOD-N
award no. W911NF-04-0001/KK4118 (LASOR PROJECT)
and the Buffer Sizing Grant no. W911NF-051-0224. The
authors would also like to thank Dr. Abtin Keshavarzian, Prof.
Isaac Keslassy, and Prof. Nick McKeown for their valued
comments and discussions about this work.

REFERENCES

[1] C. S. Chang, Y. T. Chen, and D. S. Lee. Constructions of optical fifo
queues. IEEE Transactions on Information Theory, 52:2838–2843, June
2006.

[2] C. S. Chang, D. S. Lee, and C. K. Tu. Recursive construction of fifo
optical multiplexers with switched delay lines. IEEE Transactions on
Information Theory, 50:3221–3233, 2004.

65



[3] R. L. Cruz and J. T. Tsai. Cod: alternative architectures for high speed
packet switching. IEEE/ACM Transactions on Networking, 4:11–20,
February 1996.

[4] M. Enachescu, Y. Ganjali, A. Goel, N. McKeown, and T. Roughgarden.
Part iii: Routers with very small buffers. ACM/SIGCOMM Computer
Communication Review, 35(3):83–90, July 2005.

[5] D. K. Hunter, M. C. Chia, and I. Andonovic. Buffering in optical packet
switches. Journal of Lightwave Technol, 16:2081–2094, December 1998.

[6] H. Park, E. F. Burmeister, S. Bjorlin, and J. E. Bowers. 40-gb/s optical
buffer design and simulations. In Numerical Simulation of Optoelectronic
Devices (NUSOD), August 2004.

[7] G. Raina, D. Towsley, and D. Wischik. Part ii: Control theory for buffer
sizing. ACM/SIGCOMM Computer Communication Review, 35(3):79–82,
July 2005.

[8] A. D. Sarwate and V. Anantharam. Exact emulation of a priority
queue with a switch and delay lines. Queueing Systems - Theory and
Applications, 53(3):115–125, July 2006.

APPENDIX

We show that under scheduling policy A, the three following
properties hold.

(i) Occupancy of W is always smaller than N/2.
An arriving packet p must be kept in W until its preceding

packet -in departing order- is transferred to the tail of some
delay line. Packet p is then scheduled to depart W in the
following time-slot. According to this policy, if W is empty
when packet p arrives, i.e., the preceding packet is in one
of the delay lines, then the maximum waiting time would be
N/2−1, which corresponds to longest delay line. During this
waiting time, all the arriving packets which are admitted to
the system according to step 1 of Algorithm A, will be kept
in W . But the policy also implies that when the waiting time
goes to 0, packet p and all other packets in W will be sent to
the delay lines consecutively, one in each time slot, until the
waiting line gets empty. Therefore, the occupancy of W never
exceeds N/2 − 1.

(ii) There is no contention among head of delay line packets.
Assume that there is no packet in the system at time 0,

and that at each time slot 0 ≤ τ ≤ t at most one packet is
scheduled to be switched into delay line Di, i = 1, ..., log N .
We prove that the same holds at time t + 1.

To prove this, we first show that if we assume that lemma 2
holds up to time t, then for any two p and p′ with successive
order, where p′ immediately follows p in departing order, the
followings also hold for any any time-slot τ ≤ t:

(†) p′ is either in the same line that contains p or is in a
longer line, and

(‡)
l′(τ) − l(τ) ≡ 1 mod d(τ) (1)

where l(τ) and l′(τ) are the locations of packets p and
p′ respectively, and d(τ) is the length of the delay line
containing packet p.

The assumption that lemma 2 is valid until time t ensures
that scheduling one packet has no effect on other packets,
i.e., when a packet is to be transferred to the tail of a delay
line, that location is guaranteed to be empty, and hence no
packet is dropped, or is prevented from going to its destined
location because of another competing packet. According to
the scheduling policy of algorithm A, a packet changes line

only when its departing order gets smaller than the length
of the current line. Therefore, a particular packet only moves
upward, from longer delay lines to shorter ones, and hence,

l(τ) − l(τ + 1) ≡ 1 mod d(τ + 1)
l′(τ) − l′(τ + 1) ≡ 1 mod d′(τ + 1) (2)

When packet p′ is transferred to one of the delay lines {Di}
from the waiting line, step 1 of algorithm A ensures that both
† and ‡ are valid. Now assume that † and ‡ are valid for some
τ < t. In the following we show that the same holds at τ +1.
If at time τ packet p′ is not at the head of some delay line,
then clearly † holds at τ +1 too. If at time τ packet p′ is at the
head of a delay line, then ‡ implies that at τ packet p is located
at the tail of some delay line, or equivalently, at τ − 1 packet
p has been at the head of a delay line. But there can be at
most one departure from the system at time τ . As a result, the
departing order of packet p′ at time τ will be greater than or
equal to that of packet p at time τ−1. Therefore, at time τ +1
packet p will be located either in the same line where p is, or
in a longer line, and hence, † holds at time τ +1 too. To show
that ‡ also holds at τ + 1, we need to keep in mind that the
length of a delay line is divisible by the length of any shorter
delay line. More specifically, d′(τ +1) is a multiple of d(τ +1)
in Equation 2, and therefore, l′(τ +1)− l(τ +1) ≡ l′(τ)− l(τ)
mod d(τ +1). Validity of ‡ at time τ +1 immediately follows
from this equation, and the fact that d(τ + 1) is a multiple of
d(τ).

To show that lemma 2 holds at time t + 1, consider two
head-of-line packets a and b at time t, located at the head
of two delay lines with length da and db, where da < db.
Denote by πa and πb the departing order of packets a and b
respectively. Since † holds at time t, we know that πa < πb.
Now let the location of these packets (enumerated as shown
in Fig. 2) be la and lb respectively. By successive application
of ‡ we have

lb − la ≡ πb − πa mod da (3)

But lb − la ≡ 0 mod da, and hence, πb −πa = kda for some
integer k ≥ 1. The scheduling policy of algorithm A is based
on placing the head-of-line packets in the longest line whose
length is not greater than the departing order of the packets.
Assume packet a is scheduled to be at the tail of a delay
line with length d0 at the next time slot. This implies that
πa ≥ d0. On the other hand, πb = πa + kda > (k + 1)d0 ≥
2d0. Therefore, there is at least one longer delay line that
can accommodate packet b without violating the scheduling
policy of algorithm A. This shows that none of the head-of-
line packets will compete for the same location at time t + 1.

(iii) Packet with departure order 1 is always at the head of
a delay line.

When a packet p with departure order k gets to the head
of some delay line, it will be scheduled to be placed in a
delay line with length l ≤ k at the next time slot. In other
words, there will be at most k−1 departures from the system
before packet p reaches the head of a line again, and hence
its departure order can not be 1 unless it is at the head.

66


