Neutral Net Neutrality

Yiannis Yiakoumis, Sachin Katti, and Nick McKeown

Stanford University

ABSTRACT

Should applications receive special treatment from the
network? And if so, who decides which applications
are preferred? This discussion, known as net neutral-
ity, goes beyond technology and is a hot political topic.
In this paper we approach net neutrality from a user’s
perspective. Through user studies, we demonstrate that
users do indeed want some services to receive preferen-
tial treatment; and their preferences have a heavy-tail:
a one-size-fits-all approach is unlikely to work. This
suggests that users should be able to decide how their
traffic is treated. A crucial part to enable user prefer-
ences, is the mechanism to express them. To this end,
we present network cookies, a general mechanism to ex-
press user preferences to the network. Using cookies,
we prototype Boost, a user-defined fast-lane and deploy
it in 161 homes.

CCS Concepts

eSocial and professional topics — Net neutrality;
eNetworks — Network architectures; Network proto-
cols; Cross-layer protocols; Middle boxes / network ap-
pliances; Network economics; Network manageability;
Home networks;

1. INTRODUCTION

Net neutrality is currently a charged debate. The core
of the argument is about which applications should re-
ceive special treatment from the network, and whether
special treatment is in the best interest of users. Several
examples of special treatment already exist, for exam-
ple Facebook Zero [3] and T-Mobile’s Music Freedom (8]

Permission to make digital or hard copies of all or part of this work for personal
or classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. Copyrights for components of this work
owned by others than the author(s) must be honored. Abstracting with credit is
permitted. To copy otherwise, or republish, to post on servers or to redistribute to
lists, requires prior specific permission and/or a fee. Request permissions from
permissions @acm.org.

SIGCOMM ’16, August 22 - 26, 2016, Florianopolis , Brazil

© 2016 Copyright held by the owner/author(s). Publication rights licensed to
ACM. ISBN 978-1-4503-4193-6/16/08. .. $15.00

DOL http://dx.doi.org/10.1145/2934872.2934896

Alexa ranking
{1y
00 1000 >5000

1 10 1

of users
)

mail.google.com
netflix.com
nbc.com

cnn.com
facebook.com
abc.go.com
speetest.net
usanetwork.com
cucirca.eu
hulu.com
ticketmaster.com|
espncricinfo.com|
intercallonline.com
»ndemandkorea.com
starsports.com
skai.gr|

Figure 1: If given the choice, which websites would home
users prioritize? The preferences have a heavy tail: 43% of
the preferences are unique, with a median popularity index
of 223.

programs promise that certain traffic is free from data
caps (aka zero-rating). Similarly, others have proposed
giving some traffic a fast-lane over the last mile. How-
ever these proposals have raised concerns [23, 13] that
the consumer will ultimately be harmed. The fear is
that ISPs and content providers will decide which ap-
plications get the best service, squeezing out new ser-
vices, and creating an insurmountable barrier to entry
for innovative new applications. Consequently, to pro-
tect users, net neutrality has devolved to “don’t do any-
thing”, i.e., treat all traffic the same.

We believe the debate is backwards. While many
arguments are made in the name of protecting users,
those very users do not seem to have a say in the mat-
ter. Specifically, if we are nervous that ISPs and content
providers will make decisions detrimental to users, why
not let users decide for themselves how their traffic is
treated? Done right, this could potentially benefit ev-
eryone: Users get what they want, ISPs provide more
value to their customers, and popular content gets pref-
erential treatment, even if the service is small and new.

We are not the first to propose involving users more
closely and ask them what they want—others have
pointed out the importance of users during the recent
update in FCC’s Open Internet rules [31, 1]. In this
paper we try to advance the net neutrality debate by

resolving two open questions related to users’ prefer-
ences.

First, do users want a say over how their traffic is
treated by the network? After all, users might prefer
not to be bothered with such details, and just have the
network treat all their traffic the same. To answer this
question, we conducted two studies of user behavior.
We prototyped a service—a user-defined fast lane called
Boost and deployed it in 161 homes, during an inter-
nal “dogfood” test of OnHub, a commercial home WiFi
router built by Google. With Boost, users can decide
which traffic gets higher priority (or decide to not give
higher priority to any traffic). They can express their
preferences through a web browser extension, either by
prioritizing a specific tab, or by always prioritizing the
traffic from a specific website. Figure 1 summarizes the
behavior of a fairly homogeneous' group of users: 43%
of expressed preferences were unique, i.e., the preferred
website was picked by only one user, while the median
popularity index of prioritized websites was 223.2 While
our sample is small, it demonstrates the diverse and
heavy-tailed nature of user preferences, and that users
are willing to express them if it is easy to do so. To
strengthen our results, we surveyed 1,000 smartphone
users about their interest and preferences in fast lanes
and zero rating services. Given the option to select
which application to zero-rate, users chose 106 different
applications from different categories (e.g., video, au-
dio, social, news). Both studies demonstrate that user
preferences have a heavy tail, and suggest that a one-
size-fits-all approach is unlikely to work for most users.

This naturally leads to the second question we wish
to resolve: Now that we know users have diverse prefer-
ences, we need to pick (or design) a mechanism to give
them control over their preferences. In other words,
how should users express their preferences to the net-
work? Should users express their detailed preferences,
or should they pick among popular applications short-
listed by an ISP? How can the network provide pref-
erential treatment to an application, without the user
having to reveal what the traffic contains? How can
ISPs account and charge for offered services? How can
we audit that the parties adhere to their agreements?
And so on. All of these questions need to be addressed
if we are to make such a system practical.

As we will show, existing mechanisms (like DiffServ,
DPI, or even new SDN-like approaches) do not ade-
quately address the concerns raised above. This was
emphasized during the last FCC hearings, when pol-
icymakers rejected an AT&T proposal for user-driven
services, concerned that the mechanism itself (or the
lack of a proper one) could potentially undermine the

"Employees of the same company (Google), living in
the same city.
2We use Alexa ranking as the popularity index.

desired outcome [1].

To tackle this challenge we present network cook-
1es—a mechanism for users to express their preferences
to the network and to content providers. A network
cookie—similar to HT'TP cookies—is a small piece of
data, that users can attach to their packets. A net-
work with appropriate information can lookup the state
associated with this cookie and apply the desired ser-
vice. Network cookies provide a simple yet expres-
stve mapping abstraction to users: we can use them
to boost, zero-rate, or arbitrarily map any traffic to
any state in the network, not just a few popular pre-
configured applications. Cookies facilitate the tus-
sle between users, applications and ISPs, and respect
the trust relationships between different parties. They
provide built-in authentication so that only authorized
users can use a given service; revocability for users to
easily change their preferences or completely withdraw
from a service; they respect user privacy, as users do not
have to reveal the content, type or origin of traffic get-
ting special treatment; and they protect against replay
and spoofing attacks preventing a third-party from re-
playing an overheard cookie. Perhaps most important,
cookies are policy-free—in fact, an ISP could use cook-
ies to prioritize a single content provider, all the way to
let each user choose her own. By separating mechanism
from policy, they enable a wide set of policies which can
be easily adjusted, enforced, and verified according to
trust relationships and regulatory frameworks. Finally,
cookies can be practically deployed in existing net-
works. They are independent from packet headers and
payload, we can match against them with high accuracy
and regardless of content popularity, presence of encryp-
tion and middleboxes, or task complexity (e.g. we can
boost a webpage, or a mobile application); they can be
incrementally deployed by individual ISPs and applica-
tions; and we can leverage different transport mecha-
nisms to carry them (e.g. a special HTTP header, a
TLS-handshake extension, an IPv6 extension header).

This user-driven approach can enable a plethora of
network services in the future. A video application
could ask for a short burst of high bandwidth when
it runs low on buffers (and risks rebuffering), while a
researcher could do the same to upload a large file be-
fore an upcoming deadline. Users can pay per burst, or
get a limited monthly quota for free. Moreover, cookies
and user preferences are not bound to net neutrality—
we can use them in other scenarios to let individuals
customize network services for their own needs. This
paper takes no position on what these services should
look like, or how to implement them in the network.
Our goal is to simply enable users to express their traf-
fic preferences to the network.

Our main contributions are:

1. Network cookies: a policy-free mechanism to express

which applications get special treatment from the net-
work in a traffic-agnostic way (§4).

2. We advocate for a user-centric view on net neutrality
and demonstrate that this is both practical and bene-
ficial. Through a user study and an online survey we
show that preferences have a heavy tail, suggesting that
a one-size-fits-all approach is unlikely to work for many
users (§2,85).

3. Prototype services that use network cookies and
user preferences, including a Boost fast-lane service, and
AnyLink, a cloud-based version of Boost which provides
slow (instead of fast) lanes that we make publicly avail-
able online (§5).

2. WHY A USER-DRIVEN APPROACH

Fast lanes and zero-rating services have been de-
ployed in several countries, in cellular and last-mile res-
idential networks. For example, Microsoft and Comcast
joined forces in the US to offer a special service for Com-
cast content to Xbox consoles. Traffic went through a
dedicated, high-bandwidth and data-cap free channel.
Similarly, Netflix partnered with Australian ISPs to ex-
empt their video traffic from a home user’s monthly
data-caps. MusicFreedom and BingeOn are services of-
fered by T-Mobile in the US to exempt a handful of
music and video services from monthly data caps. Spo-
tify has similar partnerships with European mobile op-
erators. Facebook-Zero and Wikipedia-Zero allow users
in emerging markets to access Facebook and Wikipedia
without a data-plan. The incentives for such services
vary—some ISPs absorb the cost for special treatment
to differentiate from competition and satisfy their cus-
tomers, others (especially in emerging markets) do it in
an effort to familiarize their users with the Internet, and
in some cases ISPs directly charge content providers for
special treatment.

These services are considered controversial as they
limit user choice to a few pre-selected applications.
They often lead to regulatory complaints and even with-
drawal of the service due to public backlash [22, 4].

So, what do users really want? We asked 1,000 smart-
phone users their preferences on zero-rating through an
online survey.® 65% of users expressed interest in a ser-
vice that lets them choose one application that does
not count against their monthly cellular data cap, or
not even require a data plan, which explains why these
services are being deployed. But when we asked them to
choose a particular application, responses were heavy-
tailed, and many users preferred websites and applica-
tions not available for special treatment by existing ser-
vices. Users expressed preference for applications rang-
ing from social networks, video, music streaming, mes-
saging and VOIP, news sites, maps, games, and edu-

3Users are aged 18-65 in the USA, surveyed via Survey-
Monkey in August 2015.

cational applications (Figure 2). Using the number of
downloads in Google Play Store as a proxy for popular-
ity, some users chose applications with 10° users (e.g.
Spotify, Facebook), while others chose specialized ap-
plications with only a few thousands users (e.g. Indie
103.1, an app from a radio station with < 50k users).
Current zero-rating services only allow users to choose
from among a small set of popular services; our sur-
vey suggests this is not what a majority of users want.
For example, Wikipedia Zero covers only 0.4% of our
users’ preferences, and Music Freedom just 11.5%. We
found similar results when surveying user interest in
fast-lanes, and a music-only zero-rating service [12].

In summary, our results strongly suggest users are
interested in services like fast-lanes and zero-rating, but
each user would prefer to boost or zero-rate different
applications. A natural question to ask is how to let
users express their preferences to the network. We start
with the question: Do existing mechanisms allow users
to correctly express their preferences to the network?

3. EXISTING MECHANISMS DON’T
WORK

Ideally, an existing mechanism would let users express
their preferences and meet our requirements. Unfortu-
nately, none of the commonly used mechanisms pass
muster. Let’s look at the three most common ones.
Deep Packet Inspection (DPI). DPI is widely used
to identify a subset of traffic (e.g., traffic coming from a
specific content provider) and then apply a special ser-
vice to it (e.g., higher bandwidth or zero-rating). DPI
sits in a middlebox and typically matches traffic at line-
rate, by examining IP addresses, TCP ports, SSL’s SNI
field, and packet contents. Typically, a new set of rules
is added for each application and web-service.

DPI suffers from what we call a high transaction
cost—adding a new preference (i.e., a new set of rules)
is hard, particularly if the service is hidden inside https
(which is increasingly common) or is hosted on a third-
party CDN (e.g., video services hosted by Akamai). As
a result, current DPI tools support only the most pop-
ular applications, and often require manual coordina-
tion between content providers and ISPs. For example,
nDPI [17], a publicly available DPI system, recognizes
only 23 out of 106 applications that our surveyed users
picked for zero-rating. MusicFreedom, an existing zero-
rating service implemented using DPI, works with only
17 out of 51 music applications mentioned in our sur-
vey [12]. Even when DPI detects an application, its
view is very different from a user’s view. Take cnn.com
as an example. Loading its front-page generates 255
flows and 6741 packets from 71 different servers. nDPI
marked only packets coming from CNN servers, which
summed up to 605 packets (less than 10%)—everything
else came from CDNs, advertisers, etc. But perhaps

~50

20
»
®
&
515
-
s}
H*
10
5
[*
1 ° °
5 S 2 Lo ac e S on 35 S SPgo EQ
g8ss § 3 5279 §8F 2° EEE2ifss
5] 2
3 82 E E 29 E 8 <3 5 6§38 g2 2 3
S B 2 o &= ¢ = 82 o 2o
e 2 o © =238 8 B 22 o Tg
£ 3 S c 2 c g 5
g 2783 5 R €2
o > g

Figure 2: “If you

schwab

Category # of apps | Popularity # of apps
AV Streaming 32 < 1M 16
Social 12 1M-10M 13
& & Facebook-Zero News 12 10M-100M 28
® @ Music Freedom Gaming 9 100M-500M 14
* * Wikipedia-Zero Photos 4 > 500M 10
A A Netflix-Australia Email 4 N/A® 25
Maps 4
Browser 3
Education 2
Other 24
e ° | “Not listed in Google Play Store (e.g.
285 ¢ % iTunes, e-banking, XBox games).
g g c
585 5
£ S
IS

could choose a single application (e.g. Facebook) to not count against your data caps (or not even require

a data-plan), which one would you choose?” Responses from 1000 smartphone users, and application breakdown by type and
popularity. Preferences have a heavy-tail (106 apps in total), and they vary in type and popularity.

most problematic, DPI only works if a user is prepared
to reveal to their ISP the service they are requesting
special treatment for, which might hurt user privacy.

In summary, despite their wide deployment, DPI
tools struggle to recognize many applications, have low
accuracy, and do not respect user privacy. Their high
transaction costs means new applications take a long
time to add, and in the meantime, applications in the
“tail” are not covered at all.

DiffServ. DiffServ allows endpoints to mark their
packets (using the 6 DSCP bits in the IP header) and
map them to a specific class in the network (e.g., high
bandwidth, low latency). Although widely implemented
in modern routers and operating systems, DiffServ can-
not be practically used to express preferences to the
network. Network operators often ignore or even re-
set DSCP bits across network boundaries, and popular
platforms (like the Chrome browser or Android’s SDK)
do not allow developers or websites to mark their traffic.

While it is common to blame network operators or
application developers for not respecting and/or not ex-
posing the necessary APIs to mark the DSCP bits, we
believe there are deeper limitations that make DiffServ
insufficient for communicating user preferences.

First, the limited set of DSCP bits supports only
64 classes (2°) and is already used internally by net-
works for their own purposes, leaving little room for
customization. Expressing user preferences with Diff-
Serv would i) require all networks, operating systems
and applications to agree at a pre-defined meaning for
each DSCP code (which has been proven impractical),
ii) expect every element in the path to respect or at
the very least not alter the DSCP marking, and iii) re-
quire networks to use a different mechanism for their
own needs. Even then, the small number of available
classes is restricting—ISPs cannot define their own cus-

tom classes, and if a packet crosses two networks there
is no way to explicitly request special treatment only by
one of them.

Second, and maybe most important, DiffServ has no
authentication and revocation primitives: any applica-
tion can set the DSCP bits and request service without
the user’s consent. Any developer can ask for special
service even if it conflicts with user preferences, or—
even worse—if it results in network charges for users,
and users or operators do not have the means to eas-
ily revoke such access. Think of a legacy gaming con-
sole that opportunistically sets the DSCP bits for low-
latency, at the same time that an operator charges for
access to this class. To avoid charges a user would have
to stop using the device, ask the console manufacturer
to update the software, or configure her home router to
reset DSCP bits coming from this device. Ideally we
want to avoid these dependencies.

As a result, DiffServ is only suited as an inter-

nal marking mechanism, categorizing traffic into broad
classes. It is not a practical way for a user to express
her preferences to the network.
Out of band flow description. A more recent ap-
proach has been to leverage the flexible control plane of
software-defined networks (SDNs), and expose an API
for applications and users to express their preferences
[32, 21]. In this approach, the application (or a user
agent) tells the centralized control plane which flows to
match on—via an out-of-band (OOB) channel—by de-
scribing which flows should get special treatment (e.g.,
using the 5-tuple). Subsequently, the control-plane pro-
grams the switches to match on these flows.

This approach has two main limitations. First, sig-
naling user preferences through the relatively slow con-
trol plane can be expensive. Recall that the frontpage
of CNN has 255 flows; sending each of them through

a centralized controller to reprogram multiple network
switches is an expensive process. Second, giving a static
flow description does not work when the flow changes—
for example, as it traverses a NAT or is encapsulated.
In a home network, the flow will change at the NAT
module of the home router, making the 5-tuple descrip-
tion invalid for the head-end router. A workaround
would be to describe a flow only with static fields, e.g.,
the server’s IP address and port, but this causes false
matches as a single server hosts content from several
other applications. In §5 we quantify some of the limi-
tations of DPI and OOB using example user preferences.

3.1 From Limitations to Requirements

The limitations of existing approaches motivated our
search for a new mechanism that satisfies three funda-
mental requirements.

The proposed mechanism should be simple for users
to understand and expressive enough to enable a vari-
ety of services (e.g., fast-lane, zero-rating and new ser-
vices that come along), let users choose any application
they like, and to express a complex set of changing user
preferences (e.g., a website, or a mobile application).

It should respect the tussle between different stake-
holders (i.e., users, the network, content providers and
policymakers). In order to support many ways to ex-
press preferences, and different regulatory frameworks,
the mechanism should be policy-free. It should not
force a user to reveal which content they request special
treatment for, and prevent unauthorized parties from
requesting special treatment without the user’s permis-
sion.

Finally, the mechanism should be practical to de-
ploy. Tt should not overly burden the user, the user’s
device or the network operator, and work well in the
presence of CDN, NAT, and HTTPS. It should be incre-
mentally deployable without requiring forklift changes
in network or content provider infrastructure.

The next section introduces network cookies, a
mapping abstraction that meets these requirements.

4. NETWORK COOKIES

Network cookies are a policy-free mechanism allowing
users to express their preferences to the network and to
remote service and content providers.

4.1 Cookies

A network cookie is a small piece of data that users
attach to their packets. As a packet flows through the
network, the network cookie communicates the user’s
preferences to the devices it encounters along the way,
possibly all the way to the end host. Upon detection,
the network and the end host lookup the cookie in a
table to decide what service to apply to the packet (and
possibly to all other packets from the same flow).

To prevent an unauthorized third-party from replay-
ing or spoofing a cookie, each cookie is unique, signed,
and can be used only once, in ways we describe below.
One way to get these properties would be for the user
to ask the network for a new cookie every time it sends
a packet. Clearly this would be burdensome and slow.
Instead, the user requests a cookie descriptor which is
then used to locally generate multiple cookies. Period-
ically, the user gets a new descriptor from the network.

The workflow goes like this: The network advertises
the special services it is offering on a well-known server;
for example, it may advertise that it has cookies avail-
able to boost any website, or only cookies to boost Ama-
zon Prime video. The user picks a cookie descriptor
from the well-known server—the user might buy it, or
be entitled to a certain number per month, via coupons,
or on whatever terms the network owner decides. Once
the user has a cookie descriptor she can use it to gen-
erate local cookies, and attach them to her packets. A
cookie descriptor typically lasts hours or days, and is
renewed by the user as needed.

To understand cookies, it helps to start by looking at
the details of the cookie descriptor, from which cookies
are generated.

struct cookie_descriptor {

// a 64-bit value that identifies a cookie
// descriptor and acts as a lookup key.
uint64_t cookie_id,

// Shared key used to sign a cookie.

char * key,

// Service data identify the network service
// the packet should receive. It can be just
// the name of the service (e.g., ’Boost’),
// or any other information.

char * service_data,

// An optional list of attributes that chara-
// cterize a cookie descriptor (e.g. when and
// how to use it, whether it is walid or not).
char * attributes[]

}

Listing 1: Cookie Descriptor

From this descriptor, the local host generates cookies
with the following fields:

struct cookie {

// 64-bit id copied from the descriptor.
uint64_t cookie_id,

// Universally unique identifier for this cookie.
uuid_t uuid,

// The time a cookie was generated. Limits the
// duration a cookie %s walid, prevents reuse,
// and reduces state kept by the network.
uint64_t timestamp,

// Message Authentication Code that verifies a
// cookie and prevents spoofing.

char * signature

};

Listing 2: Cookie

Cookie Descriptor

Descriptor
DB

«°
<& X _)
,@&006#\@ c},i\‘(' ,,,, > Cookie Server
& et
RN 2,;&‘:/'
O 6\"\0 RO 3. Agents generate
v““s& /' 2. User agents decide? cookies, and the switch
2 / when how, and wherel matches agamst them

L, “toinsert a cookie

U 1
User Agent v NETELIX
|:| &) l:l EIEI

Cookle

o

1

1
[}
\
.-

Cook\e enabled Switch or Middlebox

Figure 3: Workflow for a cookie-enabled service.

4.2 Cookie Workflow

Let’s take a closer look at how users express their
preferences via the cookie mechanism, and the pieces
we need to make it all work. Figure 3 shows the main
architecture.

Components: The first component is the user-agent
which has a GUI for the user to express her preferences.
In the background it interfaces to the network to dis-
cover and acquire cookie descriptors. The user-agent
also generates and adds cookies to packets. User-agents
can be integrated into an OS, browser, or in the appli-
cation itself (e.g., a video player or a VOIP client). The
second component is the well-known server where users
go to acquire cookie descriptors. Finally, the network
switches (or middle boxes) that match against cookies
and apply the right service.
Workflow: Getting and using a cookie descriptor hap-
pens in three stages:
1. Cookie Descriptor Discovery and Acquisition.
Users and their clients learn of network services through
standard discovery protocols (DHCP, mDNS) or it can
be hardcoded in the application (e.g. Amazon Prime
Video might know where to get special Amazon cook-
ies). Once found, the descriptor is downloaded over
n (optionally authenticated) out-of-band mechanism
(e.g., a JSON API). For example, in a home network
anyone who can talk to the AP might get a cookie, while
a cellular network might require users to login first.
2. Cookie Insertion: There are several ways to use
a cookie. First to consider is when to use a cookie (and
the associated service). This can be explicitly requested
by the user, or assisted by an application (e.g., a video
client can ask for extra bandwidth if its buffer runs
low). Next to consider is where to add the cookie to
our packets. We suggest supporting multiple choices;
we can add it at the application layer (as an http header
for unencrypted traffic or a TLS handshake extension
for https traffic [10]); at the transport layer (TCP long
options [9], integration with QUIC, or a custom UDP-
based header); or at the network layer (IPv6 extension
header). Choosing the right layer depends on the ap-

def generate_cookie(descriptor):
value = descriptor.id + uuid() + now()
digest = hmac.digest(descriptor.key, value)
return value + digest

def match_cookie(cookie):
cookie_desc = cookie_descriptors[cookie.id]
if ((cookie_desc ||

Mlcookie_desc.is_valid_sig(cookie) ||

Mcookie_desc.is_unique_uuid(cookie.uuid) ||

abs(cookie.timestamp - now()) > NCT):
return None
cookie_desc.append_cookie(cookie.uuid)
return cookie_desc

Listing 3: Pseudocode for cookie generation and matching.

plications and network services involved.

3. Cookie Generation and Matching: The last step
is to actually generate and match against cookies. Gen-
eration is easy from the cookie descriptor, and the
cookie is added to an outgoing packet. The network
detects a cookie and verifies that it is valid by checking
that (i) the cookie ID is known, (ii) the MAC digest
matches, (iii) the timestamp is within the “network co-
herency time”, and iv) that we haven’t seen the cookie
before. The network coherency time (NCT) is the max-
imum time we expect a packet to live within the net-
work, and is set to 5 seconds. To verify uniqueness, we
keep a list of recently seen cookies (within NCT). If a
cookie is valid, the network applies the service directly
(e.g., sends the packet through a high-priority queue).
Alternatively it can mark the DSCP bits to enforce the
service elsewhere in the network. If it fails to match,
it behaves as if the cookie was not there, offering de-
fault services. We show sample code for generation and
matching in Listing 3.

4.3 Cookie Attributes

Some network services will need more information to
be supplied with a cookie. For example, a cookie might
only be valid when the user is connected to a specific
WiFi network, or in a specific geographic area, or in
a specific network domain. Cookies therefore carry un-
formatted, optional attributes, added by the network or
end host, to provide more service-specific information.

We expect some cookie attributes to become
common-place, such as
e Granularity: A cookie can be applied to a packet
or a flow. By default, a cookie characterizes the flow
(5-tuple) that a packet belongs to. If set, granularity
lists the header fields that compose the flow described
by this cookie (e.g. 5-tuple for a TCP flow), or limit
it to this packet only. We can also define whether the
cookie applies the desired service for the reverse flow.
e Shared: When set, the cookie descriptor can be
shared between multiple endpoints. In a home network,

the home router might acquire a descriptor from the
ISP and then act as a cache, sharing it with devices
connected to the home network.

o Acknowledgment Cookie: When set, the remote
server is expected to send an acknowledgment cookie
with the response. Acknowledgment cookies can be
used for different reasons, like setup necessary state on
the reverse path, or verify that the server received the
cookie from the user. A server could just playback the
original cookie sent by the user, or generate and send a
new one (assuming the user shared the cookie descriptor
with the server).

e Network delivery guarantees: When set, the net-
work is expected to send an acknowledgment cookie
with the reverse traffic to acknowledge that it received
and acted upon a cookie sent by the user. It is similar
with the previous attribute, but instead of the server, it
is the network that acknowledges receiving the cookie.
Guarantees can be useful when cookies are ignored (e.g.,
a bug in the client that creates an erroneous cookie, or
a temporary loss of state in the network)—for exam-
ple a video player could notify the user that she will
be charged for the upcoming video. Network delivery
guarantees assume that the network can modify traffic
between endpoints to add a cookie, and therefore de-
pend on the transport protocol (e.g., HTTP and IPv6
work fine, while SSL/TLS prevents third parties from
modifying traffic between endpoints. New protocols
(like mcTLS [26]) enhance SSL to allow middleboxes
to change traffic between endpoints in a trusted way.

e Cookie Transport: A list of protocols over which a
cookie can be carried (e.g., HTTP, TCP, IPv6, TLS).
e Expiration: Until when a cookie descriptor is valid.
Expiration dates can be used to revoke a service, and
also limit the risk of descriptor leakage.

4.4 Putting Everything Together

As a concrete example, consider an ISP that offers its
customers a fast-lane for their high priority traffic. The
home AP discovers that cookie descriptors are available
at hitp://cookie-server.com (through the DHCP lease
from the user’s ISP). The AP connects to the server
with the user’s credentials and acquires a cookie descrip-
tor, which is valid for one week. A browser extension
goes to hitp://192.168.1.1/getcookies, discovers that a
fast-lane is available in the network, and highlights a
button which boosts a given website when clicked. The
extension uses the cookie descriptor to add cookies to
outgoing packets.

4.5 Cookie Properties

Cookies are designed to meet three high-level require-
ments: (i) they are simple for users to understand and
expressive enough to enable a variety of services and
user preferences; (ii) they respect tussles between users,

applications, and ISPs, and allow for different outcomes
by separating the mechanism (the cookie) from the pol-
icy (the preference); and (iii) they can be deployed in to-
day’s infrastructure without requiring forklift changes.
To meet these requirements, cookies exhibit specific
properties which we describe below. Table 1 provides a
summary and compares cookies with alternative mech-
anisms to express user preferences.
Cookies are simple yet expressive: Cookies are
conceptually simple for users to understand: “I insert
a cookie in my packets to make specific traffic faster”.
They are not tied to a specific network service and can
be used for QoS, zero-rating, or generally for linking
arbitrary traffic to arbitrary state and processing (e.g.,
consume a network service, identify a user or act as au-
thentication credentials). Cookies have low transaction
cost and can express the heavy tail of user preferences,
not just a list of a few popular applications. They can
also express high-level and complex demands, like pri-
oritizing a webpage or mobile application. They are
composable—users can combine multiple services (po-
tentially by different networks) by composing multiple
cookies together. Finally, cookies can be cleanly del-
egated by the users to either the content provider or
some third party that figures out how to best use cook-
ies for them. Specifically, users can choose to share their
cookie descriptors with their desired content providers
who in turn can generate cookies on their behalf and
apply them to the downlink content. Delegation still
keeps the users in control while respecting any tussle
boundaries between content providers and ISPs.
Cookies respect tussles: Cookies respect the trust
relationships between users, applications and ISPs in
terms of privacy, accountability and authentication.
They are unique and can be used only once, prevent-
ing an unauthorized party from spoofing or replaying
an already used cookie. Cookies are signed and provide
built-in authentication during the descriptor acquisition
phase, which means that only authorized users can gen-
erate a valid cookie. User privacy is respected: the net-
work does not need to know what the traffic is that the
cookie is attached to, allowing, for example, a user to
direct a video flow to the fast-lane, without revealing
the content provider or even the fact that it is a video
flow.# Cookies are also revocable by both parties: when
users want to stop using a service, they just have to stop
adding a cookie to their traffic, or ask the network to
invalidate a descriptor (in case they cannot control the
application); the network can similarly stop matching
against a cookie to stop offering a service. Revocability

4By respecting user privacy we mean that use of cookies
does not require users to reveal what is their preferred
content to the network. They do not add any further
protection for information already exposed, such as des-
tination IP address and port.

is also helpful in case a descriptor gets leaked or an ap-
plication gets compromised. Finally, cookies are policy-
free: they separate mechanism from policy and enable
different outcomes in tussles depending on trust rela-
tionships and regulatory frameworks between the dif-
ferent stakeholders. At the same time they are easily
auditable—interested parties can monitor what traffic
gets special treatment by the network just by looking
at who gets access to cookie descriptors and how.
Cookies can be practically deployed: Cookies
are separate entities from the traffic itself (header, pay-
load and path). Therefore they are not affected by en-
cryption (https), service co-hosting (CDN and cloud-
based infrastructure), or packet-mangling middleboxes
such as NAT. The network can capture complex con-
texts (e.g., a webpage, a mobile application) with high
accuracy. They can be used in multiple transport layers
(e.g., HTTP header, TLS handshake extension, IPv6
header). They can also be incrementally deployed by
changing only the client and the network—we do not
depend on servers to recognize or act upon cookies.

In the simplest scenario (e.g., charging, QoS over the
last-mile), we can detect cookies and enforce the ser-
vice for a flow in both directions using a single box. For
more involved deployments, cookies do not need to be
deployed in every switch/router in the network; an ISP
can look up cookies at the edge (e.g., as a Virtualized
Network Function) and then use an internal mechanism
to consume a service within the network (e.g., DiffServ
or FlowTags [19]). Because cookies are composable, we
can incrementally use services from different network
providers. For example, a videocall between two users
could use two cookies to get sufficient bandwidth at
both access networks, without requiring any coordina-
tion between the two network operators. Acknowledg-
ment cookies expand cookies functionality to simplify
service enforcement for reverse flows, especially for as-
symetric paths: we can ask the server to bounce back
the cookie we sent, or generate a fresh one from a del-
egated descriptor and send it along with the downlink
flow. Cookies also fail gracefully; when the network fails
to match or verify a cookie, it can default to best-effort
services. Furthermore, we can enhance the cookie work-
flow with optional network delivery guarantees. When
the network detects a cookie, it generates an “acknowl-
edgment” cookie from the same descriptor, and attaches
it to the response. If the client doesn’t receive an ac-
knowledgement cookie, it shows an alert to the user
asking whether she wants to continue nevertheless with
best effort service.

While expressive, the separation of cookies and
cookie descriptors results in a low overhead mechanism.
Cookie descriptors are exchanged over a slow and less
dynamic control plane. Therefore we can exchange ar-
bitrary length state without worrying about overhead,

add authentication primitives to protect acquisition of
cookies and provide accountability, and add attributes
to further define their use. Cookies themselves are tai-
lored for dataplane use. They are generated, inserted,
and matched locally on a straight-forward way, they
are unique to protect against replay attacks, and carry
cryptographic primitives to ensure integrity, authentic-
ity and delivery guarantees for security.

4.6 Deployment Considerations

Deployment considerations for a cookie-based service
will depend on the network and type of service to be
offered (e.g., last-mile QoS, zero-rating).

To better understand scalability concerns, we built
a cookie-based zero-rating middlebox on top of Click
and DPDK [25, 2] using an off-the-shelf server.® Our
middle-box keeps two counters per IP address (one for
free and another for charged data), and enforces the
service in software for both directions of a flow. Cookies
are embedded as a special HTTP REQUEST header for
HTTP traffic or TLS ClientHello extension for HTTPS.
We expect this NFV-like approach to be common for
services like zero-rating and last-mile QoS deployed in
edge networks, and is on par with architecture trends
in ISPs and mobile carriers.

For a given packet our middle-box has to perform one
of three tasks: i) search for a potential cookie (first 2-
3 packets of every flow), ii) search and verify a cookie
(a packet that contains a cookie) or iii) simply map a
packet to a given service (for a flow already updated
in our system). As such, performance will depend on
traffic parameters such as the number of packets per
flow, or new flows per second.

We evaluated performance against a 15-hour
anonymized trace that includes all wireless traffic from
our university’s main campus, student residences, and
visitor WiFi. It contains 11.3 million HTTP(S) flows
originating from 73613 distinct IP addresses (median
flow size is 50 packets, and 99-percentile for new flows
per second is 442).° We connected our middlebox with a
MoonGen packet generator [18] which sends flows with
cookies and monitors how fast our middlebox can for-
ward packets. Assuming 50-packet flows, 100K cookie
descriptors, and a cookie for each flow, our middle-box
was able to saturate a 10Gb link with 512-bytes pack-
ets (~48000 new flows per second), much more than
required by the university trace. Performance drops
below line-rate for smaller packet or flow sizes (Figure
4).

There are certain steps to further scale our system.
First, we can use multiple cores instead of one, and sim-

58-core Intel Xeon @ 2.60GHz, 128GB of RAM, 2 10Gb
NIC.

6The trace was collected on Jan. 26th 2015 from 9am
to 11:59pm.

Cookies | DPI | OOB | DiffServ
arbitrary traffic <> arbitrary state v X v X
Simple Lf)w transaction cost v X v v
& High-level preferences v X v v
Expressive Composable v X v X
Delegetable v X v X
Protection from replay, spoofing v v X v
Tussle Built-in Authentication v X v X
Aware Respect Privacy v X v v
Revocable v X v X
Independent from headerspace, payload, path v X X X
Deployable High Accuracy v X v v
Multiple transport mechanisms v X X X
Low overhead v v X v
Network Delivery Guarantees v X v X

Table 1: Network Cookies properties and comparison with alternative mechanisms to map traffic to a network service.

ilarly add more than one middle-boxes to scale-out the
deployment, along with a load-balancer that shares the
traffic among servers. A similar approach for software-
based NAT was demonstrated to scale up to 40Gb/s
with six commodity servers [27]. The main challenge
to scale out cookies in a distributed deployment comes
from verifying uniqueness as cookies from the same de-
scriptor might appear in different places (a problem
known as double-spending in digital cash schemes). We
can relax uniqueness verification in certain cases—for
example an ISP can ensure that all cookies from a spe-
cific descriptor always go through the same middle-box
where uniqueness can be locally verified. An in-depth
exploration of potential risks and methods to verify
uniqueness on a distributed deployment is left for fu-
ture work.

We now discuss some variations of the above deploy-
ment scenario.
Proxy-Mode: Instead of deploying cookies in-band
with traffic of interest, cookies can also operate in proxy
mode, i.e., co-located with a web proxy through which
clients send their traffic. This can ease deployment (e.g.,
the service can be deployed in existing datacenters) and
is particularly interesting for usecases where proxying
overhead is not critical (e.g., zero-rating for cellular net-
works). AnyLink (§5) operates in proxy mode to emu-
late slower links for application developers.
Cookie—DSCP mapping: Service enforcement does
not have to be co-located with cookie inspection. The
ISP can look up cookies at the edge, and then use an
internal mechanism to consume a service within the net-
work (e.g., DiffServ, MPLS, or QCI for LTE networks)
without requiring all switches to support cookies. In
essence, cookies enable users to express their preference
and communicate it to the network in a trusted and re-
vocable way, independent of the path. The network can
then use a different mechanism to interpret and realize

this preference internally.
Packet-based cookies: Transport protocols that
guarantee a cookie is contained within a single packet
(e.g., IPv6 extension header, QUIC) can further im-
prove performance. First, they require less state, as
we don’t need to reassemble part of a flow before pro-
cessing a cookie. In the extreme, if every packet car-
ries a cookie, flow-related state is eliminated (in the
expense of bandwidth overhead and higher matching
rates). Packet-based cookies can facilitate better hard-
ware support which follows next.
Hardware support for cookies: Processing cookies
will most likely take place in software, as current equip-
ment does not not support HMAC-style verification or
direct state setup for reverse flows. However, config-
urable hardware [15] and hardware-software coordina-
tion can still be beneficial. The hardware could detect
and forward to software only packets that contain cook-
ies, avoiding the extra overhead for all other packets. It
could further verify the timestamp and look the cookie
id against a table of known descriptors, further reduc-
ing the amount of packets that need to go to software.
Discussions with hardware vendors implied that these
capabilities are available today in modern hardware.
All in all, while deployment details will depend on the
actual service and network under consideration, cook-
ies seem practical for a wide variety of existing usecases.
Furthermore, existing trends like Software Defined Net-
works, programmable hardware, and Network Function
Virtualization will further improve their applicability
and performance.

S. BOOST: A USER-DEFINED FAST
LANE

To understand how users would like to customize
their network, we prototype and deploy a service called
Boost, which allows users to decide which traffic will

10 CEEEEE e e E e B

.8
2]
Q.
Qo
S 6
5
o
S 4
=)
o
£ 10 pkts/flow

21| — 50 pkisfilow

- 100 pkis/flow .
0 1500 1024 512 256 64

packet size (bytes)

Figure 4: Matching performance for a Click-DPDK based
cookie middlebox. Our prototype can provide 10Gb/s line-
rate for 50 packet flows and 512-bytes packets using a single
core; and process all wireless traffic from a university cam-
pus.

travel in the “fast lane” to their home network. Boost
is very simple: it sends fast-lane traffic through a high
priority queue, and occasionally throttles non-fast-lane
traffic; it was designed to let us study user prefer-
ences rather than as a production-ready service. Boost
was deployed in 161 homes as part of early testing for
Google’s OnHub home WiFi router. Interested readers
can access sample code and try a cloud-based version
of Boost which provides slow (instead of fast) lanes at
http://anylink.stanford.edu.

Boost consists of two elements, a daemon and server
running on the home access point, and a user-facing
agent implemented as a Chrome browser extension.

5.1 Boost Agent

The agent is a Chrome browser extension, and lets
users decide which traffic to boost in the following ways.
Boost a tab. All traffic from/to a specific tab is
boosted. The user initiates this once per tab, and it
lasts until she closes the tab (or after an hour).
Always Boost a website. Traffic related to a website
gets priority.” The setting is remembered; whenever a
user visits this website the agent informs the AP for
related flows.

The browser provides an interesting vantage point.
Users can boost any traffic they like, not just a short-
list of popular applications; and they declare their pref-
erences in an intuitive, easy-to-understand way: they
identify webpages they would like to boost. While easy
from the browser’s vantage point, it is much more com-
plicated if viewed from the network; all it sees is a large
number of flows being started. For example, in the (oth-
erwise simple) task of loading the frontpage of cnn.com,
the browser starts 255 flows to 71 different servers. This
highlights an interesting paradox: what is simple and
meaningful for the user (e.g., a webpage, a mobile app)

“We define a website by the domain at the browser’s
address bar, and boost all flows generated within this
tab.

can be very complex for the network to detect; what is
easy for the network (e.g., the IP of a server or a spe-
cific flow) is often meaningless for the users. Cookies
with support from an agent can bridge the gap between
users and networks.

Focusing on web traffic and the application layer
gives us an easy place to start studying users’ prefer-
ences, and a relatively easy deployment path. We add
cookie-related functionality without requiring any ker-
nel, server, or protocol support, and we can develop
and deploy actual services on top of the Chrome browser
which work with standard HTTP(S) traffic. Being close
to the user, preferences can also capture user context:
they can relate to content, as traffic is still unencrypted;
or take into account the active tab of the browser; and
they can be further enhanced by applications: a user
preference can be combined with a trigger from a video
client running low in buffer. These properties are not
browser specific, but hint towards a more generic design
choice: should we place an agent closer to users and
applications, or follow a more network-centric approach
(e.g., place the agent at a network gateway)? We choose
the former, as it can capture user preferences and user
context in a much better way.

We insert cookies as a special HT'TP header for unen-
crypted traffic, and as a custom TLS extension (in TLS
ClientHello messages) for HT'TPS traffic. To better ad-
just with TLS and HTTP, we send a base64-encoded
text cookie. We intercept outgoing http(s) requests
using a Chrome API, extract related metadata (e.g.,
which tab generated it, the url in the address bar), and
if it matches with user preferences we add a boost cookie
to it. While adding an http header is straightforward,
to add a TLS extension we had to modify Chrome’s
SSL/TLS library.®

To start boosting traffic, the agent issues a boost re-
quest to a well-known server using a JSON message.
The server responds with a boost cookie descriptor. A
boost event (and the related cookie descriptor) expires
by default after one hour. To resolve conflicts when
multiple clients want to boost within a household, we
have a last one wins policy, and expect users to resolve
conflicts at a human level, if this is not enough.

5.2 Boost Daemon and Cookie Server

We keep cookie descriptors at a server already known
to our Boost agents. We store them in a persistent SQL
database and expose a JSON API for users to acquire
them. We implement a python-based daemon on the
WiFi router which sniffs traffic, looks up cookies and
enforces the desired QoS service. Our daemon sniffs
the first 3 incoming packets for each flow; if it detects
a cookie, it tries to match the cookie against a known
descriptor and verifies its integrity. If this is successful,

8Chrome uses BoringSSL, a fork of OpenSSL.

— best-effort
7| === boosted
throttled

o2 4 6 8 10 12
flow completion time (sec)

(a) (b)

Figure 5: a) User interface for Boost. b) Flow completion
time for a 300KB flow in the presence of background traffic.

it adds this and the reverse flow to the fast lane using
a set of standard tools in the WiFi router (iptables and
Linux tc).

To provision the path for boosted traffic we i) use the
high-bandwidth wireless WMM queue, and ii) throttle
other traffic to ensure certain capacity for boosted traf-
fic through the last-mile connection. The actual throt-
tling rate depends on the capacity of the WAN con-
nection which we estimate using periodic active tests.
Figure 5(b) shows a scenario for a 6Mbps connection,
where we throttle non-boosted traffic to 1Mbps.

We should emphasize that our Boost prototype is far
from perfect; for example, it is not work-conserving if
the user does not use the fast-lane. This reflects our goal
to understand user’s preferences, rather than build the
perfect service. We plan to improve the Boost prototype
and install into more WiFi routers.

5.3 Measurements of Users’ Preferences

Our first version of Boost, which uses an out-of-band
API to communicate to the WiFi router, was made
available to 400 home users, during an internal “dog-
food” test of the OnHub home WiFi router. 161 users
(40%) installed the extension in their browsers. Figure
5(a) shows a screenshot from the Boost extension while
navigating to an online educational platform.

Figure 1 shows the websites prioritized by users,
the number of clients that boosted a given domain,
and their popularity. Many users boosted popular US
video websites (Netflix, YouTube, HBO, ABC, Fox, and
ESPN). The tail also includes less popular sites, such as
a VoIP service, on-demand video services from several
countries, as well as a website for ticketing auctions,
where a few milliseconds might help secure a ticket for
a popular event. Informal discussion with users also
pinpointed interesting usecases: one user had a slow In-
ternet connection (3Mb/s) and occasionally wanted to
dedicate all resources to a specific task (stream a video);
another wanted to prioritize business-related calls; and
a third one wanted to prioritize Netflix on his TV, but
not Netflix on his kids tablets.

5.4 Accuracy when boosting with cookies
Our prototype lets us check if cookies will boost the

correct websites; and whether they would have been
correctly boosted by alternative implementations that
do not use cookies. As an example, we examine three
preferences from our users (youtube.com, cnn.com, and
skai.gr, a Greek media site). Navigating to the front-
page of each site generates 80/3750, 255/6741, and
83/1983 flows/packets respectively. As shown in Fig-
ure 6(a), using cookies and our Chrome agent, we boost
> 90% of traffic in all three cases. Our agent misses
DNS requests and traffic prefetched by Chrome.

Next we compare cookies with a DPI-based design,
to see if it could correctly identify and boost the same
three websites. We use nDPI [17], a publicly available
DPI system which can detect more than 220 popular
applications, protocols, and websites. We ask nDPI to
recognize and boost the websites, based on the traffic
it sees in the network, then check to see if it identifies
them correctly. DPI correctly identified only 18% of
the traffic when we tried to boost cnn.com, and failed
to detect any traffic for the Greek media site as it had
no rules for it. Moreover, nDPI occasionally matched
the wrong packets (false positives). When trying to
match youtube.com it also matched 12% of packets
from skai.gr, as it embedded YouTube’s video player.

Finally we compare with an out-of-band (OOB)
mechanism that sends a flow description to a central
controller, asking it to boost traffic matching the rule.
OOB detects the same flows with cookies, as they both
detect traffic in the browser (Figure 6(c)). But it suffers
from false positives. To make a flow description valid
across a NAT we can only use the destination IP and
port. This leads to 40% false positives in our exam-
ple, as a major share of the traffic comes from the same
servers (e.g., CDN, ads, social sharing plugins).

6. DISCUSSION

Differentiated network services are subject to mul-
tiple factors, such as stakeholders economic incen-
tives, regulatory frameworks, industry competition,
user familiriaty with Internet services, and the under-
lying technology. In this section we discuss the role of
network cookies in the wider ecosystem.

Cookies are policy-free: They don’t dictate what the
policy is and can enable different outcomes, all the way
from user-driven services to ones where an ISP can
handpick a single service to differentiate. Their main
value comes from streamlining the process for certain
traffic to get special treatment: All we need to do is
decide who gets access to cookie descriptors and how.

First, cookies enable new policies that are not avail-
able with existing technologies. This paper discussed
one of them in depth: User-driven services. Others are
also possible. For example, because cookies are inde-
pendent from the traffic itself, a third party (other than
the content provider or ISP) can pay for delivery of ar-

EEE matched EEl matched EEE matched
100 I false 100 N false 100 N false
g g g
5 80 < 80 5 80
2 2 2
8] 8
o 60 S 60 S 60
o a a
2 2 2
£ 40 £ 0 £ 0
54 © <
a aQ =%
20 20 20
0 OJ - 0 o
cnn.com youtube.com skai.gr cnn.com youtube.com skai.gr cnn.com youtube.com skai.gr
) Cookies (b) nDPIT (¢) Out-of-band

Figure 6: Matching accuracy for three sample user preferences. DPI cannot capture the complexity of a website, and fails to
match any traffic from a less popular site. OOB can match a website with high accuracy, and respects the heavy tail of user
preferences, but doesn’t work well when flows change (e.g., by NAT or encapsulation). Using coarse granularity descriptions
leads to false positive matches. Cookies can serve any user preference with high accuracy and no false positives.

bitrary content (e.g., a school or non-profit could sub-
sidize the cost of data delivery for certain educational
videos).

Second, they can significantly accelerate and stream-
line service provisioning, as any traffic can be easily dif-
ferentiated, even in relatively complex scenarios (e.g., a
video stream, with a side-chat service, and video adver-
tisements from a third-party ad-network). Streamlining
how traffic is mapped to different network policies not
only reduces overhead for ISPs and content providers,
but can also lead to services which are more inclusive,
transparent, and easily auditable. This can be very im-
portant, especially in an environment of mistrust among
different stakeholders.

Take T-Mobile’s Music Freedom program as an exam-
ple.? T-Mobile claims that any licenced music stream-
ing provider is eligible to participate at its zero-rated
program at no cost. But why are many services ex-
cluded? After two years of operations and seven service
expansions, Music Freedom included 44 out of more
than 2500 licenced online radio streaming stations [8,
6]. When we run our online user survey (August 2015),
Music Freedom included only 17 out of 51 unique mu-
sic applications listed by our respondents. We believe
that this is related with the manual and involved tech-
nical process to add new participants in Music Free-
dom.'® SomaFM, a popular online radio station, spent
18 months to become part of the program, having been
first ignored by T-Mobile then confronted with techni-
cal limitations [28]. We experienced something similar:
We worked with RockRadio.gr, a small regional radio
station to help them participate in Music Freedom, but
after three e-mails to the designated address and several
months we heard no reply from T-Mobile. These inci-
dents not only limit user choice, but can dramatically
affect competition between services within the same cat-

9Music Freedom represents a broad range of class-based
services. Similar ones have been explored for video,
VoIP, healthcare and educational services.

10 According to anecdotal sources, T-Mobile uses DPI
techniques to detect eligible traffic for Music Freedom.

egory.

Small providers complain that T-Mobile ignores them
because they are not big enough; T-Mobile claims that
it is open to everyone and uses technical limitations to
explain delays; and the FCC wants to investigate on a
per-case basis, but it does not have the means to do so.

Cookies remove technical barriers and make the pro-
cess straightforward—all an ISP has to do is give each
content provider a cookie descriptor. This makes it eas-
ier for both ISPs and content providers to coordinate.
Regulators can efficiently audit if involved parties play
fairly. The FCC could demand that T-Mobile maintains
a public database with the dates for all cookie descrip-
tor requests, and it should be obliged to provide the
descriptor to eligible parties within three days. This is
similar to the FCC’s “local number portability rules,”
which requires phone companies to complete the trans-
fer of a phone number from one company to another
within one business day from user’s request [20].

7. RELATED WORK

Previous work in research and commercial products
highlighted the need to give users and applications con-
trol over network functions, both in home and enterprise
networks [32, 24, 29, 21, 5]. They all use derivatives of
DPI and OOB techniques, and as such inherit the limi-
tations we described in §3. FlowTags [19] use DSCP bits
to co-ordinate with middleboxes and facilitate enforce-
ment of network services in the presence of NAT and
similar functions. Like DiffServ, they lack authentica-
tion primitives, support only up to 64 tags, and require
full control of the path, which make them better fit for
enterprise networks instead of functionality across net-
work boundaries.

The advent of HT'TPS emphasized the limitations of
DPI and spurred interest in how to communicate be-
tween endpoints and middleboxes while preserving end-
to-end encryption. mcTLS [26] extends TLS to allow
endpoints to incorporate trusted middleboxes into se-
cure sessions, while SPUD [7] proposes a new UDP

transport layer that creates a “tube” to group multiple
subflows between two endpoints. They both provide
rich, bidirectional communication between endpoints
and the network. In contrast, cookies provide a thin-
ner interface (i.e., a mapping abstraction), but at the
same time are much simpler to deploy: they work along
with multiple existing protocols (e.g., HTTP(S), UDP,
TCP), they can be incrementally deployed without
modification or support from the servers, and they don’t
require symmetric paths or new encryption schemes.
Furthermore, cookies can leverage the primitives given
by these protocols. For example, each cookie can have
its own mcTLS context, and allow the network to mod-
ify it in order to provide network delivery guarantees.

BlindBox [30] takes a different approach: it performs
deep-packet inspection directly on the encrypted traffic
using novel encryption schemes. It is mostly tailored
for IDS and firewalls (instead of expressing user prefer-
ences), and the associated complexity is significant—it
introduces a new protocol, new encryption schemes, and
a heavyweight process to setup the necessary encryption
context for a new flow (up to 90 seconds).

Network capabilities [14] was a proposal to prevent
DDoS attacks. Despite the different context, they are
perhaps the closest mechanism to network cookies. Ca-
pabilities are tokens granted by a server to a client, to
verify a connection between the two and signal the net-
work to forward it through a protected path. In con-
trast, cookies are granted by the network and are not
bounded to a specific connection—both AnyLink and
Boost work for any traffic without requiring support
from the servers. Furthermore, cookie descriptors de-
couple discovery, acquisition and authentication from
actual traffic, leading to a much lower overhead mecha-
nism.

There is a vast literature covering net neutrality,
mostly from an economics and policy perspective. Dur-
ing recent FCC hearings, both sides of the debate talked
favorably about user-driven prioritization [31, 1]. Net
Neutrality advocates welcomed the approach, but raised
concerns on whether the actual implementation of user-
driven prioritization could limit user choice [11]. Net-
work cookies directly address these concerns, as they
provide a simple, policy-free mechanism, and allow reg-
ulators to decide and subsequently audit the policy sim-
ply by monitoring who gets access to cookie descriptors
and how. Moreover, our user studies provide insights
on how to better preserve the users’ interests.

The design of network cookies has been motivated by
“the tussle” [16], a position that accommodating the tus-
sle between different Internet stakeholders is a crucial
part to the evolution of the network’s technical archi-
tecture; and of course HT'TP cookies, a small piece of
data that users attach to their traffic when they visit a
website to customize their content.

8. CONCLUSION

We live in a time of enormous focus on how to im-
prove the Internet, how to encourage ISPs to keep in-
vesting to improve it, and how to ensure users continue
to have unfettered access to a broad range of services,
content and applications. This focus has taken place
mostly between large companies and government, with
the interests of network operators pitted against content
providers. Government’s role has been to look out for
us, the users. But largely, there has not been a way for
us to take part, outside lobbying our political represen-
tatives. This paper tries to make two contributions to
the debate. Network cookies provide a neutral, policy-
free mechanism to express which applications receive
special treatment from the network, regardless of pop-
ularity, complexity of task, or presence of middleboxes
while providing the necessary means for authentication,
accountability and user privacy. Using network cookies
we advocate for a user-centric policy, where users can di-
rectly state their preferences and look after themselves.
Our basic premise is that if users can express (and po-
tentially pay for) how they want their network traffic to
be treated, then it becomes safe - in fact desirable - to
treat some traffic as more important than other.

Acknowledgements

The authors would like to thank our shepherd, Phillipa
Gill and anonymous Sigcomm reviewers for their feed-
back. We would also like to thank Barbara Van
Schewick and Ramesh Johari for valuable comments in
early drafts of this paper, and Andreas Terzis, Ankur
Jain, Roshan Baliga, and all other participants for their
help with our Boost prototype deployment at Google.
This work is supported by the Open Networking Re-
search Center, the Platforms Lab at Stanford Univer-
sity, AT&T and Intel. The opinions expressed in this
paper are those of the authors only.

9. REFERENCES

[1] AT&T comments to the FCC. http:

/ /apps.fcc.gov/ecfs/document /view?id=7521679206.

[2] Data Plane Development Kit. http://www.dpdk.org.

[3] Facebook Zero Wikipedia Entry.
https://en.wikipedia.org/wiki/FacebookZero.

[4] Netflix apologizes for undermining Net Neutrality.
http://www.fastcompany.com/3045150/fast-
feed /netflix-apologizes-for-undermining-net-
neutrality-in-australia.

[5] Qualcomm StreamBoost for Home Routers.
https://www.qualcomm.com/news/releases/2013/01/
04/qualcomm-introduces-streamboost-technology-
optimize-performance-and.

[6] Sound Exchange Non-Profit Organization.

[7] Substrate Protocol for User Datagrams (SPUD)
Prototype. https://tools.ietf.org/html/draft-
hildebrand-spud-prototype-03.

8]
[9]

[10]

[16]

18]

[19]

[20]

[21]

[22]

[23]

T-Mobile Music Freedom. http://www.t-
mobile.com/offer /free-music-streaming.html.

TCP Extended Data Offset Option (IETF Draft).
https://tools.ietf.org/html/draft-ietf-tcpm-tcp-edo-03.
Transport Layer Security (TLS) Extensions.
http://www.iana.org/assignments/tls-extensiontype-
values/tls-extensiontype-values.xhtml.

Washington Post Article on User-Driven
Prioritization.
https://www.washingtonpost.com/news/the-
switch/wp/2014/09/15 /atts-fascinating-third-way-
proposal-on-net-neutrality /.

What is wrong with zero-rating and how to fix it.
https://medium.com/@gyiakoumis/what-is-wrong-
with-zero-rating-and-how-to-fix-it-
7eb229e9e610#.5xzq2jktg.

Why Music Freedom May Hurt Net Neutrality.
http://venturebeat.com/2014/08/30/why-t-mobiles-
music-freedom-is-hurting-net-neutrality /.

T. Anderson, T. Roscoe, and D. Wetherall. Preventing
internet denial-of-service with capabilities. ACM
SIGCOMM Computer Communication Review,
34(1):39-44, 2004.

P. Bosshart, D. Daly, G. Gibb, M. Izzard,

N. McKeown, J. Rexford, C. Schlesinger, D. Talayco,
A. Vahdat, G. Varghese, et al. P4: Programming
protocol-independent packet processors. ACM
SIGCOMM Computer Communication Review,
44(3):87-95, 2014.

D. D. Clark, J. Wroclawski, K. R. Sollins, and

R. Braden. Tussle in cyberspace: defining tomorrow’s
internet. In ACM SIGCOMM Computer
Communication Review, volume 32, pages 347-356.
ACM, 2002.

L. Deri, M. Martinelli, T. Bujlow, and A. Cardigliano.
ndpi: Open-source high-speed deep packet inspection.
In Wireless Communications and Mobile Computing
Conference (IWCMC), 2014 International, pages
617-622. IEEE, 2014.

P. Emmerich, F. Wohlfart, D. Raumer, and G. Carle.
Moongen: A scriptable high-speed packet generator.
arXi preprint arXiv:1410.3322, 2014.

S. K. Fayazbakhsh, V. Sekar, M. Yu, and J. C. Mogul.
Flowtags: Enforcing network-wide policies in the
presence of dynamic middlebox actions. In Proceedings
of the second ACM SIGCOMM workshop on Hot
topics in software defined networking, pages 19-24.
ACM, 2013.

FCC. Number Transfer Process.
https://www.fcc.gov/consumers/guides/keeping-your-
telephone-number-when-changing-service-providers.
A. D. Ferguson, A. Guha, C. Liang, R. Fonseca, and
S. Krishnamurthi. Participatory networking: An api
for application control of sdns. In ACM SIGCOMM
Computer Communication Review, volume 43, pages
327-338. ACM, 2013.
http://consumerist.com/2012/04 /16 /netflix-ceo-rips-
comcast-on-net-neutrality. Netflix CEO, Comcast &
Net Neutrality.

http://www.wired.com/2015/05 /backlash-facebooks-
free-internet-service-grows/. Backlash against
Facebook Free Internet Service grows.

[24]

(25]

[26]

27]

(28]

29]

(30]

(31]

(32]

H. Kim, S. Sundaresan, M. Chetty, N. Feamster, and
W. K. Edwards. Communicating with caps: Managing
usage caps in home networks. In ACM SIGCOMM
Computer Communication Review, volume 41, pages
470-471. ACM, 2011.

E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. F.
Kaashoek. The click modular router. ACM
Transactions on Computer Systems (TOCS),
18(3):263-297, 2000.

D. Naylor, K. Schomp, M. Varvello, I. Leontiadis,

J. Blackburn, D. R. Lépez, K. Papagiannaki,

P. Rodriguez Rodriguez, and P. Steenkiste.
Multi-context tls (mctls): Enabling secure in-network
functionality in tls. In Proceedings of the 2015 ACM
Conference on Special Interest Group on Data
Communication, pages 199-212. ACM, 2015.

V. A. Olteanu, F. Huici, and C. Raiciu. Lost in
network address translation: Lessons from scaling the
world’s simplest middlebox. In Proceedings of the 2015
ACM SIGCOMM Workshop on Hot Topics in
Middleboxes and Network Function Virtualization,
HotMiddlebox 15, pages 19-24, New York, NY, USA,
2015. ACM.

Rusty Hodge, SomaFM Founder. Unfairness in
T-MobileaAZs unmetered music streaming.
http://rainnews.com/rusty-hodge-unfairness-tmobile-
unmetered-music-streaming/.

J. Schulz-Zander, C. Mayer, B. Ciobotaru, S. Schmid,
and A. Feldmann. Opensdwn: Programmatic control
over home and enterprise wifi. In Proceedings of the
1st ACM SIGCOMM Symposium on Software Defined
Networking Research, SOSR 15, pages 16:1-16:12,
New York, NY, USA, 2015. ACM.

J. Sherry, C. Lan, R. A. Popa, and S. Ratnasamy.
Blindbox: Deep packet inspection over encrypted
traffic. SIGCOMM Comput. Commun. Rev.,
45(5):213-226, Aug. 2015.

B. Van Schewick. Network neutrality and quality of
service: What a non-discrimination rule should look
like. 2014.

Y. Yiakoumis, S. Katti, T.-Y. Huang, N. McKeown,
K.-K. Yap, and R. Johari. Putting home users in
charge of their network. In Proceedings of the 2012
ACM Conference on Ubiquitous Computing.

