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Abstract

The process of categorizing packets into “flows” in an Internet router is called packet
classification. All packets belonging to the same flow obey a pre-defined rule and are processed in
a similar manner by the router. For example, all packets with the same source and destination IP
addresses may be defined to form a flow. Packet classification is needed for non “best-effort”
services, such as firewalls and quality of service; services that require the capability to distinguish
and isolate traffic in different flows for suitable processing. In general, packet classification on
multiple fields is a difficult problem. Hence, researchers have proposed a variety of algorithms
which, broadly speaking, can be categorized as “basic search algorithms,” geometric algorithms,
heuristic algorithms, or hardware-specific search algorithms. In this tutorial we describe
algorithms that are representative of each category, and discuss which type of algorithm might be
suitable for different applications.

1  Introduction

Until recently, Internet routers provided only “best-effort” service, servicing packets in

a first-come-first-served manner. Routers are now called upon to provide different quali-

ties of service to different applications which means routers need new mechanisms such as

admission control, resource reservation, per-flow queueing, and fair scheduling. All of

these mechanisms require the router to distinguish packets belonging to different flows.

Flows are specified byrules applied to incoming packets. We call a collection of rules

a classifier. Each rule specifies a flow that a packet may belong to based on some criteria
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applied to the packet header, as shown in Figure 1. To illustrate the variety of classifiers,

consider some examples of how packet classification can be used by an ISP to provide dif-

ferent services. Figure 2 shows ISP1 connected to three different sites: enterprise networks

E1 and E2 and a Network Access Point1 (NAP), which is in turn connected to ISP2 and

ISP3. ISP1 provides a number of different services to its customers, as shown in Table 1.

1.  A network access point is a network site which acts as an exchange point for Internet traffic. ISPs connect to the NAP
to exchange traffic with other ISPs.

TABLE  1.

Service Example

Packet Filtering Deny all traffic from ISP3 (on interfaceX) destined to E2.

Policy Routing Send all voice-over-IP traffic arriving from E1 (on interfaceY) and
destined to E2 via a separate ATM network.

Accounting & Billing Treat all video traffic to E1 (via interfaceY) as highest priority and
perform accounting for the traffic sent this way.

Traffic Rate Limiting Ensure that ISP2 does not inject more than 10Mbps of email traffic
and 50Mbps of total traffic on interfaceX.

Traffic Shaping Ensure that no more than 50Mbps of web traffic is injected into ISP2
on interfaceX.

Figure 1 This figure shows some of the header fields (and their widths) that might be used for classifying
the packet. Although not shown in this figure, higher layer (e.g., application-level) headers may also be
used.

L2- DAL2-SAL3-PROTL3-DAL3-SAL4-PROTL4-SP L4-DPPAYLOAD

Link layer headerNetwork layer headerTransport layer header

DA =Destination Address
SA = Source Address
PROT = Protocol

L2 = Layer 2 (e.g., Ethernet)

L3 = Layer 3(e.g., IP)

L4 = Layer 4(e.g., TCP)
SP = Source Port
DP =Destination Port

48b48b8b32b32b8b16b 16b
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Table 2 shows the flows that an incoming packet must be classified into by the router

at interfaceX. Note that the flows specified may or may not be mutually exclusive. For

example, the first and second flow in Table 2 overlap. This is common in practice, and

when no explicit priorities are specified, we follow the convention that rules closer to the

top of the list take priority.

1.1 Problem statement

Each rule of a classifier has  components.  is the component of ruleR, and is

a regular expression on the  field of the packet header. A packetP is said tomatch rule

R, if , the  field of the header ofP satisfies the regular expression . In practice, a

TABLE  2.

Flow Relevant Packet Fields:

Email and from ISP2 Source Link-layer Address, Source Transport port number

From ISP2 Source Link-layer Address

From ISP3 and going to E2 Source Link-layer Address,

Destination Network-Layer Address

All other packets —

ISP2

ISP3

E1

E2

ISP1

X

Z

Y

Router

Figure 2 Example network of an ISP (ISP1) connected to two enterprise networks (E1 and E2) and to two
other ISP networks across a network access point (NAP).
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rule component is not a general regular expression but is often limited by syntax to a sim-

ple address/mask or operator/number(s) specification. In an address/mask specification, a

0 (respectively 1) at bit positionx in the mask denotes that the corresponding bit in the

address is a don’t care (respectively significant) bit. Examples of operator/number(s) spec-

ifications areeq 1232 andrange 34-9339. Note that a prefix can be specified as an address/

mask pair where the mask is contiguous — i.e., all bits with value 1 appear to the left of

bits with value 0 in the mask. It can also be specified as a range of width equal to  where

. Most commonly occurring specifications can be represented by

ranges.

An example real-life classifier in four dimensions is shown in Table 3. By convention,

the first rule R1 is of highest priority and rule R7 is of lowest priority. Some example clas-

sification results are shown in Table 4.

TABLE  3.

Rule
Network-layer

Destination (address/
mask)

Network-layer Source
(address/mask)

Transport-
layer

Destination

Transport-
layer

Protocol
Action

R1 152.163.190.69/
255.255.255.255

152.163.80.11/
255.255.255.255

* * Deny

R2 152.168.3.0/
255.255.255.0

152.163.200.157/
255.255.255.255

eq www udp Deny

R5 152.163.198.4/
255.255.255.255

152.163.160.0/
255.255.252.0

gt 1023 tcp Permit

R6 0.0.0.0/0.0.0.0 0.0.0.0/0.0.0.0 * * Permit

TABLE  4.

Packet
Header

Network-layer
Destination

Network-layer
Source

Transport-
layer

Destination

Transport-
layer

Protocol

Best matching
rule, Action

P1 152.163.190.69 152.163.80.11 www tcp R1, Deny

P2 152.168.3.21 152.163.200.157 www udp R2, Deny

P3 152.168.198.4 152.163.160.10 1024 tcp R5, Permit

2
t

t 32 prefixlength–=
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Longest prefix matching for routing lookups is a special-case of one-dimensional

packet classification. All packets destined to the set of addresses described by a common

prefix may be considered to be part of the same flow. The address of the next hop where

the packet should be forwarded to is the associated action. The length of the prefix defines

the priority of the rule.

2  Performance metrics for classification algorithms
• Search speed — Faster links require faster classification. For example, links run-

ning at 10Gbps can bring 31.25 million packets per second (assuming minimum

sized 40 byte TCP/IP packets).

• Low storage requirements — Small storage requirements enable the use of fast

memory technologies like SRAM (Static Random Access Memory). SRAM can

be used as an on-chip cache by a software algorithm and as on-chip SRAM for a

hardware algorithm.

• Ability to handle large real-life classifiers.

• Fast updates —As the classifier changes, the data structure needs to be updated.

We can categorize data structures into those which can add or delete entries incre-

mentally, and those which need to be reconstructed from scratch each time the

classifier changes. When the data structure is reconstructed from scratch, we call

it “pre-processing”. The update rate differs among different applications: a very

low update rate may be sufficient in firewalls where entries are added manually or

infrequently, whereas a router with per-flow queues may require very frequent

updates.

• Scalability in the number of header fields used for classification.

• Flexibility in specification — A classification algorithm should support general

rules, including prefixes, operators (range, less than, greater than, equal to, etc.)

and wildcards. In some applications, non-contiguous masks may be required.
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3  Classification algorithms

3.1 Background

For the next few sections, we will use the example classifier in Table 5 repeatedly. The

classifier has six rules in two fields labeled  and ; each specification is a prefix of

maximum length 3 bits. We will refer to the classifier as  and each rule  as a

2-tuple: .

3.1.1 Bounds from Computational Geometry

There is a simple geometric interpretation of packet classification. While a prefix rep-

resents a contiguous interval on the number line, a two-dimensional rule represents a rect-

angle in two-dimensional euclidean space, and a rule in  dimensions represents a -

dimensional hyper-rectangle. A classifier is therefore a collection of prioritized hyper-

rectangles, and a packet header represents a point in  dimensions. For example, Figure 3

shows the classifier in Table 5 geometrically in which high priority rules overlay lower

TABLE  5.

Rule F1 F2

00* 00*

0* 01*

1* 0*

00* 0*

0* 1*

* 1*

F1 F2

C Rj{ }= Rj

Rj1 Rj2,〈 〉

R1

R2

R3

R4

R5

R6

d d

d
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priority rules. Classifying a packet is equivalent to finding the highest priority rectangle

that contains the point representing the packet. For example, point P(011,110) in Figure 3

would be classified by rule .

There are several standard geometry problems such as ray shooting, point location and

rectangle enclosure that resemble packet classification. Point location involves finding the

enclosing region of a point, given a set of non-overlapping regions. The best bounds for

point location in  rectangular regions and  dimensions are  time with

 space;1 or  time with  space [7][8]. In packet classification,

hyper-rectangles can overlap making classification at least as hard as point location.

Hence, a solution is either impracticably large (with 100 rules and 4 fields,  space is

about 100MBytes) or too slow (  is about 350 memory accesses).

We can conclude that: (1) Multi-field classification is considerably more complex than

one-dimensional longest prefix matching, and (2) Complexity may require that practical

solutions use heuristics.

1.  The time bound for  is  [7] but has large constant factors.

000 010 100
111

110
101011001

000

100

111

110

101

011

001

010
R2

R3

R5 R6

P

Figure 3 Geometric representation of the classifier in Table 5. A packet represents a point, for instance
P(011,110), in two-dimensional space. Note that R4 is hidden by R1 and R2.

R1

R5

N d 3> O Nlog( )

O N
d

( ) O Nlog( ) d 1–
( ) O N( )

d 3≤ O Nloglog( )

N
d

Nlog( ) d 1–
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3.1.2 Range Lookups

Packet classification is made yet more complex by the need to match on ranges as well

as prefixes. A range lookup for a dimension of width  bits can be defined as:

Definition 1: Given a set of  disjoint ranges  that form a partition of

the number line , i.e.,  and  are such that

; the range lookup problem is to find the

range  (and any associated information) that contains an incoming point .

To assess the increased complexity of ranges, we can convert each range to a set of

prefixes (a prefix of length  corresponds to a range  where the  least signif-

icant bits of  are all 0 and those of  are all 1) and use a longest prefix matching algo-

rithm [ref tutorial paper in same issue]. Table 6 shows some examples of range-to-prefix

conversions for .

A -bit range can be represented by at most  prefixes (see the last row of Table

6 as an example) which means a prefix matching algorithm can find ranges with  times

as much storage. Feldman and Muthukrishnan [3] show a reduction of ranges to prefix

lookup with a two-fold storage increase that can be used in some specific multi-dimen-

sional classification schemes.

TABLE  6.

Range Constituent Prefixes

[4,7] 01**

[3,8] 0011, 01**, 1000

[1,14] 0001, 001*, 01**, 10**, 110*, 1110

W

N G Gi l i ui[ , ]={ }=

0 2
W

1–[ , ] l i ui

l1 0= l i ui≤ l i 1+ ui 1+= uN 2
W

1–=, , ,

GP P

s l u,[ ] W s–( )

l u

W 4=

W 2W 2–

2W
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3.2 Taxonomy of classification algorithms

The classification algorithms we will describe here can be categorized into the four

classes shown in Table 7.

We now proceed to describe representative algorithms from each class.

3.3 Basic data structures

3.3.1 Linear search

The simplest data structure is a linked-list of rules stored in order of decreasing prior-

ity. A packet is compared with each rule sequentially until a rule is found that matches all

relevant fields. While simple and storage-efficient, this algorithm clearly has poor scaling

properties; the time to classify a packet grows linearly with the number of rules.

3.3.2 Hierarchical tries

A -dimensional hierarchical radix trie is a simple extension of the one dimensional

radix trie data structure, and is constructed recursively as follows. If  is greater than 1,

we first construct a 1-dimensional trie, called the -trie, on the set of prefixes ,

belonging to dimension  of all rules in the classifier, . For each prefix, , in

the -trie, we recursively construct a -dimensional hierarchical trie, , on those

rules which specify exactly  in dimension , i.e., on the set of rules . Pre-

fix  is linked to the trie  using anext-trie pointer. The storage complexity of the data

TABLE  7.

Category Algorithms

Basic data
structures

Linear search, caching, hierarchical tries, set-pruning
tries

Geometry-
based

Grid-of-tries, AQT, FIS

Heuristic RFC, hierarchical cuttings, tuple-space search

Hardware only Ternary CAM, bitmap-intersection

d

d

F1 Rj1{ }

F1 C Rj{ }= p

F1 d 1–( ) Tp

p F1 Rj :Rj1 p={ }

p Tp
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structure for an -rule classifier is . The data structure for the classifier in Table 5

is shown in Figure 4. Hierarchical tries are sometimes called “multi-level tries”, “back-

tracking-search tries”, or “trie-of-tries”.

Classification of an incoming packet  proceeds as follows. The query

algorithm first traverses the -trie based on the bits in . At each -trie node encoun-

tered, the algorithm follows the next-trie pointer (if present) and traverses the -

dimensional trie. The query time complexity for -dimensions is therefore . Incre-

mental updates can be carried out similarly in  time since each component of the

updated rule is stored in exactly one location at maximum depth .

3.3.3 Set-pruning tries

A set-pruning trie data structure [12] is similar, but with reduced query time obtained

by replicating rules to eliminate recursive traversals. The data structure for the classifier in

Table 5 is shown in Figure 5. The query algorithm for an incoming packet

need only traverse the -trie to find the longest matching prefix of , follow its next-

trie pointer (if present), traverse the -trie to find the longest matching prefix of , and

N O NdW( )

F1-trie

F2-triesR6

R3

R5

R2

R4

R1

0

0

0

0

0

0

1

1

1

1

1

Figure 4 A hierarchical trie data structure. The gray pointers are the “next-trie” pointers. The path
traversed by the query algorithm on an incoming packet (000, 010) is shown.

search path

v1 v2 … vd, , ,( )

F1 v1 F1

d 1–( )

d O W
d

( )

O d
2
W( )

O dW( )

v1 v2 … vd, , ,( )

F1 v1

F2 v1
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so on for all dimensions. The rules are replicated to ensure that every matching rule will

be encountered in the path. The query time is reduced to  at the expense of

increased storage of  since a rule may need to be replicated  times. Update

complexity is , and hence, this data structure works only for relatively static classifi-

ers.

3.4 Geometric algorithms

3.4.1 Grid-of-tries

The grid-of-tries data structure, proposed by Srinivasan et al [10] for 2-dimensional

classification, reduces storages space by allocating a rule to only one trie node as in a hier-

archical trie, and yet achieves  query time by pre-computing and storing aswitch

pointer in some trie nodes. A switch pointer is labeled with ‘0’ or ‘1’ and guides the

search process. The conditions which must be satisfied for a switch pointer labeled  (  =

’0’ or ‘1’) to exist from a node  in the trie  to a node  of another trie  are (see Fig-

ure 6):

O dW( )

O N
d
dW( ) O N

d
( )

O N
d

( )

F1-trie

F2-tries

R6

R3

R5

R4

R1

0

0

0

0

0

0

1

1

1

1

search path

R5

1

R5

R2

1

R2

R6

1

Figure 5 A set-pruning trie data structure. The gray pointers are the “next-trie” pointers. The path
traversed by the query algorithm on an incoming packet (000, 010) is shown.

x

O W( )

b b

w Tw x Tx
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1.  and  are distinct tries built on the prefix components of dimension .
and  are pointed to by two distinct nodes, say  and  respectively of the same
trie, , built on prefix components of dimension .

2. The bit-string that denotes the path from the root node to node  in trie  con-

catenated with the bit  is identical to the bit-string that denotes the path from the

root node to node  in the trie .

3. Node  does not have a child pointer labeled , and

4. Node  in trie  is the closest ancestor of node  that satisfies the above condi-

tions.

 If the query algorithm traverses paths  and  in

a hierarchical trie, it need only traverse the path  on a grid-of-tries.

This is because paths  and  are identical (by condition 2 above) till  terminates

at node  because it has no child branch (by condition 3). The switch pointer eliminates

the need for backtracking in a hierarchical trie without the storage of a set-pruning trie.

Each bit of the packet header is examined at most once, so the time complexity reduces to

, while storage complexity  is the same as a 2-dimensional hierarchical trie.

However, switch pointers makes incremental updates difficult, so the authors [10] recom-

mend rebuilding the data structure (in time ) for each update. An example of the

grid-of-tries data structure is shown in Figure 7.

Tx Tw F2 Tx
Tw r s

T F1

w Tw

b

x Tx

w b

s T r

F1-trie

F2-tries

w
y
x

r

s

TxTw

T

Figure 6  The conditions under which a switch pointer exists from node w to x.

U1 s root Tx( ) y x, , ,( ) U2 r root Tw( ) w, ,( )

s r root Tw( ) w x, , , ,( )

U1 U2 U1

w

O W( ) O NW( )

O NW( )



13

Reference [10] reports 2MBytes of storage for a 20,000 two-dimensional classifier

with destination and source IP prefixes. The stride of the destination (source) prefix trie

was 8 (5) bits respectively, leading to a maximum of 9 memory accesses.

Grid-of-tries works well for two dimensional classification, and can be used for the

last two dimensions of a multi-dimensional hierarchical trie, decreasing the classification

time complexity by a factor of  to . As with hierarchical and set-pruning

tries, grid-of-tries handles range specifications by splitting into prefixes.

3.4.2 Cross-producting

Cross-producting [10] is suitable for an arbitrary number of dimensions. Packets are

classified by composing the results of separate 1-dimensional range lookups for each

dimension as explained below.

Constructing the data structure involves computing a set of ranges, , of size

, projected by rule specifications in each dimension . Let ,

F1-trie

F2-tries
R6

R3

R5

R2

R4

R1

0

00

0

0 0

1

1

1

1

1

Figure 7 The grid-of-tries data structure. The switch pointers are shown dashed. The path traversed by the
query algorithm on an incoming packet (000, 010) is shown.

search path

1

1

1

W O NW
d 1–

( )

Gk

sk Gk= k 1 k d≤ ≤, rk
j
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, denote the  range in . A cross-product table  of size  is con-

structed, and the best matching rule for each entry  is

pre-computed and stored. Classifying a packet  involves a range lookup in

each dimension  to identify the range  containing point . The tuple

is then found in the cross-product table  which contains the pre-computed best match-

ing rule. Figure 8 shows an example.

Given that  prefixes leads to at most  ranges,  and  is of size .

The lookup time is  where  is the time complexity of finding a range in one

dimension. Because of its high worst case storage complexity, cross-producting is suitable

for very small classifiers. Reference [10] proposes using an on-demand cross-producting

scheme together with caching for classifiers bigger than 50 rules in five dimensions.

Updates require reconstruction of the cross-product table, and so cross-producting is suit-

able for relatively static classifiers.

1 j sk≤ ≤ j
th

Gk CT sk
k 1=

d

∏

r1

i1
r2

i2 … rd

id, , , 
 

1 i k sk≤ ≤ 1 k d≤ ≤, ,

v1 v2 … vd, , ,( )

k rk

ik
vk r1

i1
r2

i2 … rd

id, , ,〈 〉

CT

(r1
1,r2

1)

r2
3

(r1
3,r2

1)

(r1
3,r2

2)
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3,r2

3)

(r1
1,r2

2)
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1,r2
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Figure 8 The table produced by the crossproducting algorithm and its geometric representation.
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3.4.3 A 2-dimensional classification scheme [6]

Lakshman and Stiliadis [6] propose a 2-dimensional classification algorithm where

one dimension, say , is restricted to have prefix specifications while the second dimen-

sion, , is allowed to have arbitrary range specifications. The data structure first builds a

trie on the prefixes of dimension , and then associates a set  of non-overlapping

ranges to each trie node, , that represents prefix . These ranges are created by (possibly

overlapping) projections on dimension  of those rules, , that specify exactly  in

dimension . A range lookup data structure (e.g., an array or a binary search tree) is then

constructed on  and associated with trie node . An example is shown in Figure 9.

Searching for point  involves a range lookup in data structure  for each trie

node, , encountered. The search in  returns the range containing , and hence the

best matching rule. The highest priority rule is selected from the rules  for all trie

nodes encountered during the traversal.

The storage complexity is  because each rule is stored only once in the data

structure. Queries take  time because an  range lookup is performed for

F1

F2

F1 Gw

w p

F2 Sw p

F1

Gw w

F1-trie

R4
R1

0

0

1

search path

000, 001, 011

R6R2

010, 011, 100, 111 100, 111

R3

000, 011

R5

Figure 9 The data structure of Section 3.4.3 for the example classifier of Table 5. The search path for
example packet P(011, 110) resulting in R5 is also shown.

P v1 v2( , ) Gw

w Gw v2

Rw{ }

O NW( )

O W Nlog( ) O Nlog( )



16

every node encountered in the -trie. This can be reduced to  usingfrac-

tional cascading [1], but that makes incremental updates impractical.

3.4.4 Area-based quadtree

The Area-based Quadtree (AQT) was proposed by Buddhikot et al [2] for two-dimen-

sional classification. AQT allows incremental updates whose complexity can be traded off

with query time by a tunable parameter. Each node of a quadtree [1] represents a two

dimensional space that is decomposed into four equal sized quadrants, each of which is

represented by a child node. The initial two dimensional space is recursively decomposed

into four equal-sized quadrants till each quadrant has at most one rule in it (Figure 10

shows an example of the decomposition). Rules are allocated to each node as follows. A

rule is said to cross a quadrant if it completely spans at least one dimension of the quad-

rant. For instance, rule R6 spans the quadrant represented by the root node in Figure 10,

while R5 does not. If we divide the 2-dimensional space into four quadrants, rule R5

crosses the north-west quadrant while rule R3 crosses the south-west quadrant. We call the

set of rules crossing the quadrant represented by a node in dimension , the -crossing fil-

ter set ( -CFS) of that node.

F1 O W Nlog+( )

00 01 10 11NW (00) NE (10)

SE (11)SW (01)

Figure 10 A quadtree constructed by decomposition of two-dimensional space. Each decomposition
results in four quadrants.

k k

k
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Two instances of the same data structure are associated with each quadtree node —

each stores the rules in -CFS ( ). Since rules in crossing filter sets span at least

one dimension, only the range specified in the other dimension need be stored. Queries

proceed two bits at a time by transposing one bit from each dimension, with two 1-dimen-

sional lookups being performed (one for each dimension on -CFS) at each node. Figure

11 shows an example.

Reference [2] proposes an efficient update algorithm that, for  two-dimensional

rules, has  space complexity,  search time and  update time, where

 is a tunable integer parameter.

3.4.5 Fat Inverted Segment tree (FIS-tree)

Feldman and Muthukrishnan [3] propose the Fat Inverted Segment tree (FIS-tree) for

two dimensional classification as a modification of a segment tree. A segment tree [1]

stores a set  of possibly overlapping line segments to answer queries such as finding the

highest priority line segment containing a given point. A segment tree is a balanced binary

search tree containing the end points of the line segments in . Each node, , represents a

range , leaves represent the original line segments in , and parent nodes represent the

k k 1 2,=

k

{R5}

{R6}

{R2, R4}

00

{R1}

{R3}

01 10

01

search path

Figure 11 An AQT data structure. The path traversed by the query algorithm for an incoming packet
P(001, 010), yields R1 as the best matching rule.
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union of the ranges represented by their children. A line segment is allocated to a node

if it contains  but not . The highest priority line segment allocated to a node

is pre-computed and stored at the node. A query traverses the segment tree from the root,

calculating the highest priority of all the pre-computed segments encountered. Figure 12

shows an example segment tree.

An FIS-tree is a segment tree with two modifications: (1) The segment tree is com-

pressed (made “fat” by increasing the degree to more than two) in order to decrease its

depth and occupies a given number of levels , and (2) Up-pointers from child to parent

nodes are used. The data structure for 2-dimensions consists of an FIS-tree on dimension

 and a range lookup data associated with each node. An instance of the range lookup

data structure associated with node  of the FIS-tree stores the ranges formed by the -

projections of those classifier rules whose -projections were allocated to .
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Figure 12 The segment tree and the 2-level FIS-tree for the classifier of Table 5.
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A query for point  first solves the range lookup problem on dimension .

This returns a leaf node of the FIS-tree representing the range containing the point . The

query algorithm then follows the up-pointers from this leaf node towards the root node,

carrying out 1-dimensional range lookups at each node. The highest priority rule contain-

ing the given point is calculated at the end of the traversal.

Queries on an -level FIS-tree have complexity  with storage complexity

, where  is the time for a 1-dimensional range lookup. Storage space can be

traded off with search time by varying . Modifications to the FIS-tree are necessary to

support incremental updates — even then, it is easier to support inserts than deletes [3].

The static FIS-tree can be extended to multiple dimensions by building hierarchical FIS-

trees, but the bounds are similar to other methods studied earlier [3].

Measurements on real-life 2-dimensional classifiers are reported in [3] using the static

FIS-tree data structure. Queries took 15 or less memory operations with a two level tree,

4-60K rules and 5MBytes of storage. Large classifiers with one million 2-dimensional

rules required 3 levels, 18 memory accesses per query and 100MBytes of storage.

3.5 Heuristics

As we saw in Section 3.1.1, the packet classification problem is expensive to solve in

the worst-case — theoretical bounds state that solutions to multi-field classification either

require storage that is geometric, or a number of memory accesses that is polylogarithmic,

in the number of classification rules. We can expect that classifiers in real networks have

considerable structure and redundancy that might be exploited by a heuristic. That is the

motivation behind the algorithms described in this section.

P v1 v2( , ) F1

v1

l O l 1+( ) tRL( )

O ln
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3.5.1 Recursive Flow Classification (RFC)

RFC [4] is a heuristic for packet classification on multiple fields. Classifying a packet

involves mapping  bits in the packet header to a  bit action identifier, where ,

. A simple, but impractical method could pre-compute the action for each of the

different packet headers, yielding the action in one step. RFC attempts to perform the

same mapping over several phases, as shown in Figure 13; at each stage the algorithm

maps one set of values to a smaller set. In each phase a set of memories return a value

shorter (i.e., expressed in fewer bits) than the index of the memory access. The algorithm,

illustrated in Figure 14, operates as follows:

1. In the first phase,  fields of the packet header are split up into multiple chunks
that are used to index into multiple memories in parallel. The contents of each
memory are chosen so that the result of the lookup is narrower than the index.

2. In subsequent phases, memories are indexed using the results from earlier
phases.

3. In the final phase, the memory yields the action.

The algorithm requires construction of the contents of each memory, detailed in [4].
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Figure 13 Showing the basic idea of Recursive Flow Classification. The reduction is carried out in
multiple phases, with a reduction in phaseI being carried out recursively on the image of the phaseI-1. The
example shows the mapping of  bits to  bits in 3 phases.2S 2T

Phase 1 Phase 2 Phase 3

Recursive Classification
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Reference [4] reports that with real-life four-dimensional classifiers of up to 1700

rules, RFC appears practical for 10Gbps line rates in hardware and 2.5Gbps rates in soft-

ware. However, the storage space and pre-processing time grow rapidly for classifiers

larger than about 6000 rules. An optimization described in [4] reduces the storage require-

ment of a 15,000 four-field classifier to below 4MBytes.

3.5.2 Hierarchical Intelligent Cuttings (HiCuts)

HiCuts [5] partitions the multi-dimensional search space guided by heuristics that

exploit the structure of the classifier. Each query leads to a leaf node in the HiCuts tree,

which stores a small number of rules that can be searched sequentially to find the best

match. The characteristics of the decision tree (its depth, degree of each node, and the

Figure 14 Packet flow in RFC.
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Packet
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local search decision to be made at each node) are chosen while preprocessing the classi-

fier based on its characteristics (see [5] for the heuristics used).

Each node, , of the tree represents a portion of the geometric search space. The root

node represents the complete -dimensional space, which is partitioned into smaller geo-

metric sub-spaces, represented by its child nodes, by cutting across one of the  dimen-

sions. Each sub-space is recursively partitioned until no sub-space has more than  rules,

where is a tunable parameter of the pre-processing algorithm. An example is shown in

Figure 15 for two dimensions with .

Parameters of the HiCuts algorithm can be tuned to trade-off query time against stor-

age requirements. On 40 real-life four-dimensional classifiers with up to 1700 rules,

HiCuts requires less than 1 MByte of storage with a worst case query time of 20 memory

accesses, and supports fast updates.
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Figure 15 A possible HiCuts tree for the example classifier in Table 5. Each ellipse in the tree denotes an
internal node  with a tuple (size of 2-dimensional space represented, dimension to cut across, number of
children). Each square is a leaf node which contains the actual classifier rules.
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3.5.3 Tuple Space Search

The basic tuple space search algorithm (Suri et al [11]) decomposes a classification

query into a number of exact match queries. The algorithm first maps each -dimensional

rule into a -tuple whose  component stores the length of the prefix specified in the

dimension of the rule (the scheme supports only prefix specifications). Hence, the set of

rules mapped to the same tuple are of a fixed and known length, and can be stored in a

hash table. Queries perform exact match operations on each of the hash tables correspond-

ing to all possible tuples in the classifier. An example is shown in Figure 16.

Query time is  hashed memory accesses, where  is the number of tuples in the

classifier. Storage complexity is  since each rule is stored in exactly one hash table.

Incremental updates are supported and require just one hashed memory access to the

hashed table associated with the tuple of the modified rule. In summary, the tuple space

search algorithm performs well for multiple dimensions in the average case if the number

of tuples is small. However, the use of hashing makes the time complexity of searches and

updates non-deterministic. The number of tuples could be very large, up to , in the

worst case. Furthermore, since the scheme supports only prefixes, the storage complexity

increases by a factor of  for generic rules as each range could be split into

prefixes in the manner explained in Section 3.1.2.
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Figure 16 The tuples and associated hash tables in the tuple space search scheme for the example
classifier of Table 5.
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3.6 Hardware-based algorithms

3.6.1 Ternary CAMs

A TCAM stores each -bit field as a (val, mask) pair; whereval andmask are each

-bit numbers. For example, if , a prefix 10* will be stored as the pair (10000,

11000). An element matches a given input key by checking if those bits ofval for which

themask bit is ‘1’, match those in the key.

A TCAM is used as shown in Figure 17. The TCAM memory array stores rules in

decreasing order of priorities, and compares an input key against every element in the

array in parallel. The -bit bit-vector,matched,indicates which rules match and so the -

bit priority encoder indicates the address of the highest priority match. The address is used

to index into a RAM to find the action associated with this prefix.
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Figure 17 The lookup operation using a ternary CAM.
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TCAMs are being increasingly deployed because of their simplicity and speed (the

promise of single clock-cycle classification). Several companies produce 2Mb TCAMs

capable of single and multi-field classification in as little as 10ns. Both faster and denser

TCAMs can be expected in the near future. There are, however, some disadvantages to

TCAMs:

1. A TCAM is less dense than a RAM, storing fewer bits in the same chip area.
One bit in an SRAM typically requires 4-6 transistors, while one bit in a TCAM
requires 11-15 transistors [9]. A 2Mb TCAM running at 100 MHz costs about $70
today, while 8 Mb of SRAM running at 200 MHz costs about $30. Furthermore,
range specifications need to be split into multiple masks, reducing the number of
entries by up to  in the worst case. If only two 16-bit dimensions specify
ranges, this is a multiplicative factor of 900. Newer TCAMs, based on DRAM
technology, have been proposed and promise higher densities. One unresolved
issue with DRAM-based CAMs is the detection of soft errors caused by alpha par-
ticles.

2. TCAMs dissipate more power than RAM solutions because an address is com-
pared against every TCAM element in parallel. At the time of writing, a 2 Mb
TCAM chip running at 50 MHz dissipates about 7 watts [13][14]. In comparison,
an 8Mb SRAM running at 200 MHz dissipates approximately 2 watts [15].

TCAMs are appealing for relatively small classifiers, but will probably remain unsuit-

able in the near future for: (1) Large classifiers (256K-1M rules) used for microflow rec-

ognition at the edge of the network, (2) Large classifiers (128-256K rules) used at edge

routers that manage thousands of subscribers (with a few rules per subscriber), (3)

Extremely high speed (greater than 200Mpps) classification, and (4) Price-sensitive appli-

cations.

3.6.2 Bitmap-intersection

The bitmap-intersection classification scheme, proposed in [6], is based on the obser-

vation that the set of rules, , that match a packet is the intersection of  sets, , where

 is the set of rules that match the packet in the  dimension alone. While cross-pro-

2W 2–( ) d
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ducting pre-computes  and stores the best matching rule in , this scheme computes

and the best matching rule during each classification operation.

In order to compute intersection of sets in hardware, each set is encoded as an -bit

bitmap with each bit corresponds to a rule. The set of matching rules is the set of rules

whose corresponding bits are ‘1’ in the bitmap. A query is similar to cross-producting:

First, a range lookup is performed in each of the  dimensions. Each lookup returns a bit-

map representing the matching rules (pre-computed for each range) in that dimension. The

 sets are intersected (a simple bit-wise AND operation) to give the set of matching rules,

from which the best matching rule is found. See Figure 18 for an example.

Since each bitmap is  bits wide, and there are  ranges in each of  dimensions,

the storage space consumed is . Query time is  where  is the

time to do one range lookup and  is the memory width. Time complexity can be reduced

by a factor of  by looking up each dimension independently in parallel. Incremental

updates are not supported.

Reference [6] reports that the scheme can support up to 512 rules with a 33 MHz field-

programmable gate array and five 1Mbit SRAMs, classifying 1Mpps. The scheme works
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Figure 18 Bitmap tables used in the “bitmap-intersection” classification scheme. See Figure 8 for a
description of the ranges. Also shown is classification query on an example packet P(011, 110).
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well for a small number of rules in multiple dimensions, but suffers from a quadratic

increase in storage space and linear increase in classification time with the size of the clas-

sifier. A variation is described in [6] that decreases storage at the expense of increased

query time.

3.7 Summary of classification schemes
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