
Experimenting with Buffer Sizes in Routers

Neda Beheshti
Stanford University

nbehesht@stanford.edu

Jad Naous
Stanford University

jnaous@stanford.edu

Yashar Ganjali
University of Toronto

yganjali@cs.toronto.edu

Nick McKeown
Stanford University

nickm@stanford.edu

ABSTRACT
Recent theoretical results in buffer sizing research suggest that core
Internet routers can achieve high link utilization, if they are capable
of storing only a handful of packets. The underlying assumption is
that the traffic is non-bursty, and that the system is operated below
85-90% utilization.

In this paper, we present a test-bed for buffer sizing experiments

using NetFPGA [2], a PCI-form factor board that contains repro-

grammable FPGA elements, and four Gigabit Ethernet interfaces. We

have designed and implemented a NetFPGA-based Ethernet switch

with finely tunable buffer sizes, and an event capturing system to

monitor buffer occupancies inside the switch. We show that reduc-

ing buffer sizes down to 20-50 packets does not necessarily degrade

system performance.

Categories and Subject Descriptors
C.2.1 [Computer-Communication Networks]: Network
Architecture and Design

General Terms
Experimentation, Performance

1. INTRODUCTION
Traditionally, it has been assumed that the required buffer

size in a network is controlled by the delay-bandwidth prod-
uct rule. According to this rule, with flows having an average
round trip time of 100ms, a router must be able to buffer
about a million packets in order to fully utilize a 10Gb/s
bottleneck link. As the capacity of the network grows ex-
ponentially over time, based on the delay-bandwidth prod-
uct rule, so will the buffer size requirements of core routers.
Keeping up with that growth has huge implications for the
design of core Internet routers.

Appenzeller et al. showed that we can reduce the buffer
size by a factor of

√

N without any degradation in perfor-
mance; where N is the number of long-lived flows going
through the router [1]. Thus, if the 10Gb/s linecard has
10,000 flows, we could reduce the buffers to 10,000 packets
[3]. In [4] and [5], it is suggested that reducing the size down
to only 20-50 packets would still result in high throughput,
if the arriving traffic is paced out, either by users or by
network. This result is based on the observation that the
inherent bursts in the traffic will be spread out when traffic
moves from slow access links to much faster core links.

Copyright is held by the author/owner(s).
ANCS’07, December 3–4, 2007, Orlando, Florida, USA.
ACM 978-1-59593-945-6/07/0012.

In this paper, we present a test-bed for experiment with
buffer sizing in routers. The test-bed is based on NetFPGA;
a PCI-form factor board that contains reprogrammable FPGA
elements, and four Gigabit Ethernet interfaces, customized
for buffer sizing experiments. The designed NetFPGA switch
has finely tunable buffer sizes. One can control the buffer
sizes (in bytes or packets) with high precision, without the
worry of hidden buffers in the system. An event capturing
system is designed which records every drop and store event
inside the switch with high resolution time stamps.

2. NETFPGA SWITCH
Fig. 1(a) shows a block diagram of the NetFPGA plat-

form. The custom four-port learning switch is an output
queued Ethernet switch which implements switching through
the SRAM. An event_capture module is designed to snoop
signals in the switch and record the precise time when they
pulse. The events are aggregated into an event packet and
then sent out through a specified port.

The block diagram in Fig. 1(b) shows the major blocks
of the switch. The bold arrows specify the path of packet
data. Packets arrive from the MAC into four receive queues.
The input_manager implements a round-robin arbiter that
selects a receive queue to read a packet from and sends the
packet to the user data path.

The user data path contains the main functionality of
the switch. The packet’s output queue is looked up in the
MAC_table, and then the packet is passed to the store_egress
module which stores it in SRAM. The send_egress module
implements a round-robin arbiter which waits for a packet
in the SRAM output queues, then sends it out to the out-

put_manager which in turn passes it out to the correct out-
put port. The event_capture module snoops on signals
from send_egress and store_ingress indicating packet stor-
age, packet removal and packet drops. The time when these
signals occur is stored along with the length of the packet
and the output queue affected in an event record. The event
records are aggregated into an event packet that is stored in
an output queue on the FPGA (not in SRAM). This queue is
serviced in round-robin order along with the SRAM output
queues by the send_egress module.

Using the management interface of the switch, it is pos-
sible to change the size of the queues, and to impose limits
on the number of packets stored in the output queues.

3. BUFFER SIZING EXPERIMENTS
Experiment Setup- Fig. 2 depicts the setup of the test-

bed network. In this network, a single point of congestion is

��������	
�����

�
�
�
�

�
�
�

�
�
�
�

�
�
�

�
�
�
�

�
�
�

�
�
�
�

�
�
�

������ ������������������
����� ���� ��� ����!�
"�#

$�%���������	�#����������
� ����
"���#��#��
� ����"� �������#����

$�&������������� ����
� ��'��������������
� &���#���	�#�����
(��#�'
�)�*�+�,��--.

�
/
�
'
�

&
0
�
�

�
�
�
�

�
%
1

�
�
�
�

�
%
1

�
�
�
�

�
%
1

�
�
�
�

�
%
1

������2	�3������ �������#����

+� ���,&�� ��������4�� �
����3��%��
#�	����

5���� ���� ����������� ����!� "��		
�#��� �

�

�
���

�"
�
'
����

��
�
�
�
���

��
���

#
�
�

�
/
�
'
�

&
0
�
�

���,
	�#!��
'������

� ��
*����
� �����#�

�
��
'

&
�
6
�

7

�
���7

�
��
��

��
�#

�
#
�

(a) (b)

Figure 1: (a) NetFPGA 2.0 block diagram, (b) Switch with event capture subsystem.

formed, where packets from several TCP servers go through
the NetFPGA switch, and share a bottleneck link towards
their destinations. TCP traffic is generated by the Spirent
Communication’s Avalanche and Reflector boxes [1]. The
Avalanche box creates a number of clients which request for
downloading files from TCP servers. The TCP servers be-
long to 99 different sub-networks, and are connected to the
output ports of the Reflector via emulated 20Mb/s access
links. The aggregated traffic is then carried to the NetF-
PGA switch over three 1Gbps links, and from the switch to
the client network over a 1Gbps bottleneck link. The av-
erage round trip time delay of TCP flows is set to 80ms.
Experiment Results- Fig. 3 shows the throughput of the

Refle

(S

Su

Su

Su

Su

Su

Su

S

Su

Su

Su

Su

Su

ector Box

Servers)

ubnet 1

ubnet 33

bnet 99

bnet 67

bnet 66

bnet 34

ubnet 1

bnet 33

ubnet 34

bnet 66

ubnet 67

bnet 99

N

20 Mb/s

1Gb/s

NetFPGA Sw

1Gb/s

1Gb/s

B

Traffic Flo

witch

(1Gb/s)

Bottleneck

ow Direction

Avalanche

(Clients

e Box

s)

Figure 2: Experiment setup

bottleneck link in a time interval of 320 seconds, and with
three different buffer sizes. The size of buffer in the designed
NetFPGA switch is accurately controllable and can be re-
duced to zero. As the graph shows, the link utilization drops
down by about 17%, when the router reduces the buffer size
from 300 packets to only 5 packets. As discussed before,
high utilization on the bottleneck link can be achieved with
very small buffers if the TCP traffic is not overly bursty.
Access links of limited capacity eliminate possible bursts in
the traffic. In the next set of experiments, throughput is
measured as a function of access bandwidth (right figure)
with 50-packet buffers. We observe that a very small access
capacity limits the throughput in the access links, and re-
duces the aggregate throughput. On the other hand, when
the access link capacity gets close to the core link capacity,
some portion of the throughput is lost due to a more bursty
traffic on the shared link. The multiplexing of different flows

0 50 100 150 200 250 300
0

1

2

3

4

5

6

7

8

9

10
x 10

8

th
ro

ug
hp

ut
 (

bp
s)

Time(sec)

Buffer size = 300 pkts
Buffer size = 20 pkts
Buffer size = 5 pkts

0 50 100 150 200 250 300
0

1

2

3

4

5

6

7

8

9

10
x 10

8

T
hr

ou
gh

pu
t (

bp
s)

Time(sec)

1Mb/s
5Mb/s
200Mb/s
20Mb/s
1Gb/s

Figure 3: Throughput vs. time, as a function of buffer size

(left), and access bandwidth (right).

in this experiment, however, doesn’t let the throughput drop
down drastically, even when the access link capacity is equal
to the core capacity.

The results of our experiments on the topology of Fig. 2
show that when the TCP traffic comes from slow access links
(having an access to core capacity ratio of 2% in our setup),
90% utilization is achieved with 20-packet buffers. Under
the same conditions, the buffer sizing rule-of-thumb would
have overestimated the required buffer size to be 10, 000
packets for achieving 100% throughput.

4. CONCLUSIONS
The results of our experiments in a NetFPGA-based test-

bed show that reducing buffer sizes down to 20-50 packets
does not necessarily degrade the bottleneck link utilization.
These results are inline with small buffer sizing theories.
The designed and implemented NetFPGA Ethernet switch
has finely tunable buffer sizes, and an event capturing sys-
tem that monitors buffer occupancies inside the switch with
16ns time resolution. Both the above features are extremely
important in any buffer sizing experiment, but do not exist
in current commercial routers.

5. REFERENCES
[1] Avalanche traffic generator. http://www.spirentcom.com.

[2] NetFPGA. http://yuba.stanford.edu/NetFPGA/.

[3] G. Appenzeller, I. Keslassy, and N. McKeown. Sizing router
buffers. In Proceedings of the ACM SIGCOMM, pages 281–292,
2004.

[4] M. Enachescu, Y. Ganjali, A. Goel, N. McKeown, and
T. Roughgarden. Routers with very small buffers. In Proceedings
of the IEEE INFOCOM, Barcelona, Spain, April 2006.

[5] G. Raina, D. Towsley, and D. Wischik. Part II: Control theory
for buffer sizing. ACM/SIGCOMM Computer Communication
Review, 35(3):79–82, July 2005.

