
PUSHING TRANSPORT LAYER LATENCY DOWN

TOWARDS ITS PHYSICAL LIMITS IN DATA CENTERS

WITH PROGRAMMABLE ARCHITECTURES AND ALGORITHMS

A DISSERTATION

SUBMITTED TO THE DEPARTMENT OF ELECTRICAL ENGINEERING

AND THE COMMITTEE ON GRADUATE STUDIES

OF STANFORD UNIVERSITY

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

Serhat Arslan

May 2024

© 2024 by Serhat Arslan. All Rights Reserved.

Re-distributed by Stanford University under license with the author.

This work is licensed under a Creative Commons Attribution-
3.0 United States License.
http://creativecommons.org/licenses/by/3.0/us/

This dissertation is online at: https://purl.stanford.edu/zj481vg3597

ii

http://creativecommons.org/licenses/by/3.0/us/
http://creativecommons.org/licenses/by/3.0/us/
https://purl.stanford.edu/zj481vg3597

I certify that I have read this dissertation and that, in my opinion, it is fully adequate in
scope and quality as a dissertation for the degree of Doctor of Philosophy.

Nick McKeown, Primary Adviser

I certify that I have read this dissertation and that, in my opinion, it is fully adequate in
scope and quality as a dissertation for the degree of Doctor of Philosophy.

Sachin Katti

I certify that I have read this dissertation and that, in my opinion, it is fully adequate in
scope and quality as a dissertation for the degree of Doctor of Philosophy.

Balaji Prabhakar

Approved for the Stanford University Committee on Graduate Studies.

Stacey F. Bent, Vice Provost for Graduate Education

This signature page was generated electronically upon submission of this dissertation in
electronic format.

iii

Abstract

Data center applications keep scaling horizontally across many machines to accommodate more users

and data. This makes the communication performance requirements even more stringent, i.e., higher

bandwidth and lower latency. The increasing link capacities address the bandwidth demands, but

the latency requirements necessitate more sophisticated solutions.

In this thesis, I observe that the transport layer is the only layer in the networking stack

to impact latency both at the end-hosts and the network. The way it handles packets sets

the end-hosts processing delay. And its congestion control determines the queuing delay in the

network. Hence, I study transport layer designs to push both latencies down to their physical limits.

First, I argue that end-host latency can be minimized by o✏oading the transport

layer to NIC hardware, but fixed-function chips prohibit custom solutions for diversi-

fied environments. As a solution, I introduce nanoTransport, a programmable NIC architecture

for message-based Remote Procedure Calls. It is programmed using the P4 language, making it

easy to modify (or create) transport protocols while the packets are processed orders of magnitude

faster than traditional software stacks. It identifies common events and primitive operations for a

streamlined, modular, and programmable pipeline; including packetization, reassembly, timeouts,

and packet generation, all expressed by the programmer.

Next, I argue that network latency can only be minimized with quick and accurate

congestion control decisions, which require precise congestion signals and the shortest

control loop delay. I present Bolt to address these requirements and push congestion control to its

theoretical limits. Bolt is based on three core ideas, (I) Sub-RTT Control (SRC) reacts to congestion

faster than one RTT, (II) Proactive Ramp-up (PRU) foresees flow completions to promptly occupy

released bandwidth, and (III) Supply matching (SM) matches bandwidth demand with supply to

maximize utilization. I show that these mechanisms reduce 99th-p latency by 80% and improve

99th-p flow completion time by up to 3⇥ compared to Swift and HPCC even at 400Gb/s.

iv

Acknowledgments

Writing a PhD thesis is a very long process that is full of ups and downs by its nature. Therefore,

having people to support me throughout the entire journey was the absolute best thing I could hope

for. As the famous Harvard Study of Adult Development1 suggests, my warm relationships with

these wonderful people will be more important than any technical work I can produce. It is now my

honor to show how grateful I am to have them by my side as I write this thesis.

First of all, I would like to thank my advisors Nick McKeown and Sachin Katti. Despite things

like the COVID-19 pandemic and their retirement from Stanford, I always felt that I could reach

out and ask for any kind of help. There is certainly no limit to what one can learn from them.

It was also a privilege to have Balaji Prabhakar, John Ousterhout, and Chris Piech on my PhD

committee. They have always intellectually inspired me to become a better researcher and engineer

I am today.

Next, I was extremely lucky to have phenomenal lab mates who mentored me, eased the di�cult

times, and celebrated the good ones with me. I have shared so many unforgettable memories with

Sundararajan Renganathan (my photo booth partner), Evgenya Pergament (my running partner),

Bruce Spang (founder of our congestion control club), Stephen Ibanez, Alex Mallery, Theo Jepsen,

Ali Abedi, Jenny Hong, and Catalin Voss. It has always been an amazing experience to watch them

create groundbreaking research in our field, and I am confident that they will continue to do so in

the future as well.

Creating an impact in the field would not be possible without my admirable collaborators

Changhoon Kim, Muhammad Shahbaz, Nandita Dukkipati, Gautam Kumar, Yuliang Li, and Jeremias

Blendin. The work you will read in this thesis exists thanks to their guidance, vision, and ability to

answer my endless questions.

Another crucial piece of support was from our lab’s admin Bisera Rakicevic who was always very

1
https://www.lifespanresearch.org/harvard-study/

v

quick in responding to all sorts of logistical inquiries while bringing “börek” to the o�ce every now

and then to make us feel at home.

I cannot end this section without mentioning the people who defined my non-technical life during

the PhD program. I am grateful for all the memories I had with Sa↵et Çakır, Bahadır Ünal, Koray

Özdemir, Erkan Şen, Cem Aydın, Begüm Tuğlu, Alp Arıbal, Şebnem Özdemir Arıbal, Orçun Aysal,

Fatma Yiğit Aysal, Mustafa Sezer Soysal, Saliha İspir Soysal, Serkan Genç, Merve Genç, Osman

Soysal, Pınar Çelik Soysal, Armağan Öztürk, Ceren Küçükyurt, Bora Hamdullahpur, Eylül Bilgin,

Arielle Anderer, Christian Kaps, Pia Ramchandani, Aneesh Rai, Katie Mehr, Tolga Dizdarer, Joseph

Carlstein, Anna Helmke, Ilai Bistritz, Allen Zhao, Anton De Leon, Pedro Milani, Kaan Alp Yay,

Berivan Işık, Erdem Bıyık, Beliz Günel, Meltem Tolunay, Melis Çakar, Cem Kesici, Anıl Kırcalıali,

Anıl Kaplan, Mehmet Yalçın Aydın, Fatmanur Caygın Aydın, Utku Erol, Kemal Erol, and Sevil

Erol. Without their companionship, I wouldn’t have the courage to move to another country and

go through the rollercoaster of a PhD program.

Unquestionably, my parents Sinan Arslan and Gülten Arslan, along with my sister Sena Arslan

have been immensely influential in how I think, interact with problems, and communicate with

people. Without these skills, I wouldn’t even be admitted to any PhD program. Thanks to such an

amazing family, I always felt safe and brave enough to explore new horizons in life.

Finally, the biggest acknowledgment belongs to my splendid wife Atiye Cansu Erol Arslan whom

I had the honor of sharing my entire adult life so far. Sharing hobbies, friends, life challenges, and

this PhD journey with her has always been a joy. I am grateful for her unwavering support for all

the di�cult times.

In the loving memory of my grandmother Fatma (Fatebe) Arslan who passed away while I was

writing this thesis...

vi

Contents

Abstract iv

Acknowledgments v

1 Introduction 1

1.1 End-Host Latency and Hardware O✏oading . 3

1.2 Network Latency and Congestion Control . 4

1.3 In This Dissertation . 6

2 Background and Related Work 8

2.1 The Transport Layer . 8

2.1.1 Software-Based Designs . 10

2.1.2 Hardware-Based Designs . 11

2.2 Congestion Control Algorithms and Transport Protocols 12

2.2.1 Sender-Driven Algorithms . 13

2.2.2 Receiver-Driven Algorithms . 16

2.2.3 Switch-Driven Algorithms . 17

2.3 Summary and Remarks . 18

3 Programmable NICs for Lower Transport Layer Latency 19

3.1 Transport Layer Dissected . 22

3.1.1 Protocol Taxonomy . 22

3.1.2 Building Blocks . 23

3.2 NanoTransport Architecture . 24

3.2.1 Programmable Components . 25

vii

3.2.2 Stateful Primitives . 27

3.2.3 Reassembly Module . 28

3.2.4 Packetization Module . 31

3.2.5 Timer Module . 33

3.3 Building NanoTransport Hardware . 34

3.3.1 Programmable Modules . 35

3.3.2 Reassembly and Packetization Modules . 35

3.3.3 Timer Modules . 36

3.3.4 Protocol Implementations . 38

3.4 Evaluating NanoTransport . 40

3.4.1 Latency and Throughput Microbenchmarks 41

3.4.2 End-to-end Evaluation . 42

3.4.3 Feasibility . 44

3.5 Discussion . 45

3.5.1 FPGA versus ASIC . 45

3.5.2 Programming New Protocols . 46

3.5.3 Multiple Concurrent Protocols . 47

3.5.4 Encryption and Compression . 48

3.5.5 Serializing RPC Data . 48

3.5.6 Scalability . 48

3.5.7 Other Use-Cases . 48

4 Sub-RTT Congestion Control for Lower Network Latency 50

4.1 Finding Precise Congestion Signals . 53

4.1.1 Handicap of Surrogate Signals . 53

4.1.2 A Non-Surrogate Signal - Stamping Queue Occupancy 54

4.2 Towards Minimal Control Loop Delay . 56

4.2.1 Feedback Delay . 56

4.2.2 Observation Period . 59

4.3 Designing Precise and Sub-RTT Congestion Control 61

4.3.1 SRC - Sub-RTT Control . 62

4.3.2 PRU - Proactive Ramp Up . 64

4.3.3 SM - Supply Matching . 66

viii

4.4 Implementing Bolt Congestion Control . 67

4.4.1 Switch Prototype . 68

4.4.2 Host Prototype . 69

4.4.3 Security and Authentication . 70

4.5 Evaluating Bolt . 70

4.5.1 Micro-Benchmarks . 70

4.5.2 Sensitivity Analysis . 74

4.5.3 Fairness Analysis . 75

4.5.4 Large Scale Simulations . 76

4.5.5 Bolt in the Lab . 78

4.6 Discussion . 80

4.6.1 Practical Considerations . 80

4.6.2 Bolt with QoS . 81

4.6.3 Approximating SRC Overhead . 83

4.6.4 Bu↵er Sizing Analysis for Sub-RTT Control 84

5 Conclusions 87

5.1 Dissertation Takeaways . 87

5.2 Future Directions . 88

5.3 Concluding Remarks . 90

Bibliography 93

ix

List of Tables

3.1 RX and TX latency (from first byte in until first byte out) on the nanoTransport

architecture for the NDP and Homa implementations when processing a single 16-

Byte message (80-Byte packet). 41

3.2 The resource utilization of the nanoTransport NDP prototype when configured to

support both 16 and 128 concurrent 32KB messages. The percentage in each en-

try indicates the % utilization of the corresponding resource available on the Virtex

Ultrascale+ FPGA. 44

4.1 E↵ectiveness of Bolt’s PRU and SM on the bottleneck utilization. 73

4.2 Tail queuing, and FCT slowdown for Bolt, HPCC, and Swift in a 5000-to-1 incast. . 76

x

List of Figures

3.1 NanoTransport architecture design. Processing steps are numbered chronologically. . 24

3.2 Ten incast messages to the same receiver with di↵erent transport protocols and bot-

tleneck bu↵er sizes while sender and receiver NICs are all running the nanoTransport

prototype. 42

3.3 FPGA resource utilization of nanoTransport when running NDP and Homa (39KB

max message size and 16 concurrent messages) compared to traditional IceNIC, which

does not implement any transport processing. 44

4.1 RPC size distribution for READ operations in Google’s data centers as of 2022 . . . 51

4.2 E↵ect of notification delay on queue draining time. 57

4.3 Under-utilization feedback . 58

4.4 cwnd of the remaining Swift flow and queue occupancy after a flow completion. . . . 59

4.5 Observation period adding up to an RTT to the control loop delay. 59

4.6 HPCC and Swift’s reaction to flow arrival and completion versus the ideal behavior. 60

4.7 Pipe model of Packet Conservation Principle . 61

4.8 Path of ACK-based vs. SRC-based (Sub-RTT) feedback 63

4.9 Bolt system overview . 68

4.10 Bolt’s reaction to flow arrival versus the ideal behavior. 71

4.11 Queuing and cwnd of the remaining flow after a flow completes. See Figure 4.4 for

the complete ramp-up of Swift. 72

4.12 cwnd of the remaining Bolt flow and queue occupancy after a flow is rerouted. 73

4.13 SRC overhead and sensitivity for di↵erent levels of burstiness 74

4.14 99th-p Slowdown for messages smaller than BDP at line rates higher than 100Gb/s . 75

4.15 Fair share allocation by Bolt . 76

xi

4.16 FCT slowdown for READ RPC Workload from Figure 4.1 77

4.17 FCT slowdown for Facebook Hadoop Workload . 78

4.18 Bolts’s lab prototype matches its simulator . 79

4.19 Simplified network topology for the theoretical analysis. 84

xii

Chapter 1

Introduction

Since the creation of the Internet, continued advances in online technologies are shaping every aspect

of our lives. Social media applications such as Facebook and Twitter have defined a new way we

interact with each other. Video conferencing solutions like Zoom and Teams have enabled remote

work arrangements. E-commerce sites such as Amazon or Alibaba have made it easier to consume

goods and services. Digital streaming platforms like Netflix and HBO Max have changed the way

we are entertained. Finally, artificial intelligence products like Siri or ChatGPT are helping us with

our daily tasks or problems we face. The list can be extended much further.

Almost all such innovative applications have one thing in common: Their software runs in data

centers around the world. This means they can scale much more easily compared to running on the

personal computer of a person because data centers are comprised of millions of servers that are

very powerful in computing. Developers simply need to design their application in a distributed way

so that it can utilize multiple servers at a time. However, this is easier said than done.

The workloads in data centers constantly evolve towards larger-scale, highly parallel applications,

and application developers expect the communication between distributed compute and storage

nodes to keep up with the workloads. For example, machine learning models have grown so much

that they can no longer fit in a single GPU server, and they need ever-increasing quantities of

data for training [56]. As a consequence, various distributed training libraries have been developed.

These libraries partition the model and/or training data across multiple servers and communicate

intensively between those servers when necessary to aggregate and consolidate results [159].

As a consequence of distributed training, the demand for network capacity has increased im-

mensely, with some arguing that it is now constrained by the communication data rate between

1

CHAPTER 1. INTRODUCTION 2

servers [171]. There is therefore an enormous amount of investment taking place to increase line

rates, as well as increasing the number of links, by increasing switch radix and thus the richness of

interconnection. 100Gb/s links are already abundant, 200Gb/s is gaining adoption, and 400Gb/s as

well as 800Gb/s Ethernet will be here soon [69].

In addition to high bandwidth, some applications need low latency communication [14]. In the

context of networking, latency is the time it takes for a unit of data to travel from one point to an-

other. For instance, consensus protocols require all participant nodes to receive and acknowledge the

most recent message as quickly as possible in order to be able to reach a consensus [2]. Applications

use such protocols for parallelism techniques such as memory coherency, e�cient load-balancing,

and in-order transaction processing.

In most cases, the performance of a low-latency application is determined by the tail in the

system. Instead of the average or median, tail latency refers to the maximum or worst-case latency

observed. In applications such as task scheduling [77], ML inference [28], and distributed sorting [75],

it is important to ensure that even these outliers are within acceptable limits to provide a consistent

and reliable user experience.

The tail latency becomes especially challenging for applications that typically send huge numbers

of Remote Procedure Calls (RPCs) between large groups of servers [79, 154] and finish their processes

only after they receive responses to all of the RPCs from the network. Accordingly, the Service

Level Objectives (SLOs) for these applications tend to place stringent requirements on network

performance.

In this dissertation, I introduce work that aims to minimize tail latency in data centers. Specifi-

cally, I present new primitives, mechanisms, and insights into di↵erent dynamics that generate delays

in delivering data to remote nodes. To achieve this goal, I start by partitioning the communication

latency into two parts and address each part individually.

The First part is the latency generated at the end-host. When data is emitted by an application

for transmission, the underlying operating system processes this data along with any communication

state. This process involves writing the data onto the network interface card, dividing it into small

chunks with packet encapsulations, and keeping track of the state for the communication protocols

(e.g., IP, TCP). Similarly, on the receive side, the end-host processes the incoming data to figure

out the receiving application, writes the data into the memory of the correct core, and transmits

control signals such as acknowledgments.

All this end-host processing takes a non-negligible time before the data can be serialized into the

CHAPTER 1. INTRODUCTION 3

network or handed to the receiving application. For instance, sending 1KB of data, including packet

headers, over a 100Gb/s network with a single non-congested switch between the end-hosts would

incur the following latencies: The packets would take 80ns to be serialized onto the links at each

hop – the sender and the switch – a total of 160ns. Assuming 150-foot-long fiber-optic cables, the

propagation of the data over the links would take around 150ns per link, a total of 300ns. Then, with

a rough estimate of 500ns packet processing latency in high-speed switches, the total networking

latency in this case would be 960ns. Therefore, even a fast end-host kernel latency of 5µs [128] at

the sender and the receiver would constitute over 91% of the one-way latency for the data transfer

between application threads. Note that propagation latency is purely governed by the speed of light,

and increasing data rate only helps serialization latency, but not the others.

The second part is the latency experienced in the network. This latency typically includes queuing

delay at the congested switches in addition to serialization, propagation, and switch processing

latencies. When the instantaneous demand for a link exceeds its capacity, switches store the incoming

packets in bu↵ers until they can forward them through this congested link, constituting the queuing

delay. Depending on the size of the bu↵ers and the instantaneous demand, this queuing time can

sometimes be as high as tens of microseconds.

Clearly, minimizing overall RPC response time as the bandwidth demands increase depends

on minimizing latency in both the end-host and the network. The transport layer of the data

center networking stack has great potential for this goal as it can a↵ect both the end-host packet

processing latency and the in-network congestion. Hence, the work presented in this dissertation

dissects the transport layer and explores ways in which the latency can be minimized. In particular,

two strategies are pursued: (I) The Use of NICs at the end-host that run transport protocols in

hardware, for minimal processing time; and (II) The use of congestion control algorithms that are

smart, for minimal queuing delays as the packet traverses the network. Next, I discuss in detail how

these strategies can minimize latency.

1.1 End-Host Latency and Hardware O✏oading

To reduce processing time on the end-host, many proposals have focused on redesigning the network

interface card (NIC) (commercial products [32, 36, 112, 113, 125, 132, 166] and research proposals [8,

45, 58, 62, 79, 83, 93, 98, 99, 104, 107, 154]). Indeed, latency can be minimized by avoiding OS-

specific, mostly non-deterministic, software overheads and placing the transport layer in hardware.

For example, eRPC [79] is a software design that combines many software techniques to reduce

CHAPTER 1. INTRODUCTION 4

median RPC response times only down to 1� 2µs whereas NeBuLa [154] is a hardware design that

reduces RPC response time below 100ns by integrating the high-speed NIC with the CPU, bypassing

PCIe, and placing arriving RPC requests directly into the L1 cache.

The current fastest reported combination of a whole system— a low-latency NIC with a transport

layer — is the nanoPU [62] designed by the McKeown Group at Stanford University which I am

also a part of. Instead of placing incoming RPC data into the L1 cache, nanoPU introduces a

direct message interface to the CPU register file, so that applications can access the incoming data

even faster. To do so, it proposes a thread scheduler and a fixed transport layer on hardware that

can process incoming packets before writing the correct piece of data onto the correct register files

on the CPU cores. As a result, it achieves a 69ns median wire-to-wire RPC response time with

a 7ns of one-way transport layer latency. This may be tempting to think that there is not much

room to reduce latency further since the nanoPU processes packets entirely in hardware, right up

until the RPC request starts processing in a thread. Yet, evolution in the network continues (i.e.,

increasing line rates and emerging applications), which means the end-hosts will likely need di↵erent

networking protocols in the future for optimal performance. And, if the transport protocol is baked

into fixed-function hardware, it will be an expensive and time-consuming task to modify it.

The design of the congestion control algorithm is the part of the transport layer that has the

most significant consequences for network latency as the workloads and infrastructure evolve. The

jury is still out as to which algorithm is the best, but there may not be a single best algorithm;

rather, the notion of the best likely depends on the particular data center topology and the specific

distributed application [142]. For example, §3.4.2 presents scenarios where NDP and Homa are each

better than the other. Consequently, the minimum latency can be sustained only in environments

where network owners can frequently change/update the transport protocol to minimize congestion

delays of the evolving tra�c patterns in their unique networks. Hence, a programmable hardware is

the ultimate prerequisite for the task at hand.

1.2 Network Latency and Congestion Control

Once the packet processing latency at the end-hosts is minimized, the next task is to determine

what it takes to minimize queuing delays in the network. For this purpose, many proposals designed

new low-latency transport layer protocols [5, 6, 13, 29, 49, 57, 54, 119] and congestion control

algorithms [1, 4, 91, 102, 117, 175] that utilize unique congestion signals and mitigation mechanisms.

For example, NDP [54] mitigates incast congestion by trimming o↵ a packet’s data in congested

CHAPTER 1. INTRODUCTION 5

switches, sending only the header to the receiver, and allowing the receiver to decide when the

packet should be resent. In contrast, DCQCN [175] relies on Explicit Congestion Notifications

(ECN) marked on packets to figure out congestion in the network. The DCQCN senders set their

transmission rate based on the frequency of reflected congestion notifications.

One factor that determines how accurate the congestion can be mitigated is the granularity of

the congestion signals used by the algorithm. Most congestion control algorithms rely on end-to-end

signals to figure out how congested the network is. For instance, the only congestion signal for TCP

used to be the absence of delivery acknowledgments, i.e., packet drop; a binary signal that kicks in

only after the congestion is well underway. Plus, a packet drop may also capture events that are

not related to congestion, e.g., link failures. These cases may lead to incomplete information at the

senders about the state of congestion in the network.

More recently, the trend has been towards using Round Trip Time (RTT) as a congestion signal

instead (e.g., Timely [117], Swift [91] and BBR [25]). But RTT is also a noisy surrogate for conges-

tion; it contains a valuable signal about congestion at the bottleneck but also includes noise from

the queuing delay at the non-bottleneck switches.

Taking a step back, it is worth asking: Why don’t the switches and routers simply tell the actual

congestion they are experiencing? After all, they must keep track of the precise occupancy of

their queues anyway; they can directly tell the end-hosts. Conventional wisdom used to say that

extracting queue occupancy information from the switches is too expensive in terms of additional

bits in headers, or complexity and power consumption. Today, having switches report this precise

value is quite feasible, with negligible increase in power or capacity loss, allowing the end-hosts

to make more accurate decisions when minimizing switch bu↵ering. Hence, utilizing such precise

congestion signals for making higher quality decisions over emerging workloads is a prerequisite to

satisfying SLOs of modern distributed applications.

For instance, HPCC [102] is designed to collect queue occupancy information from the switches

using Inband Network Telemetry (INT) [88]. The collected information is used to calculate the

link utilization over the last RTT. If the link is found to be underutilized, the sender increases its

congestion window size (cwnd) to send more packets in the next RTT. Otherwise, cwnd is reduced

to allow the congested switch drain its queue throughout the next RTT.

Unfortunately, collecting accurate congestion signals is not su�cient to minimize tail latency in

the network. Collecting such signals as early as possible is also very important in making timely

decisions to mitigate congestion. For example, in §4.2 it is shown that HPCC’s RTT-scale signal

CHAPTER 1. INTRODUCTION 6

collection and decision-making make the algorithm less stable during flow arrivals.

Moreover, most congestion control algorithms are designed to linearly increase their cwnd in the

absence of a congestion signal to capture available bandwidth, if any. This feature is also used for

fairness among senders in the network [176]. However, this routine cwnd increase implies that senders

continue transmitting more and more data towards the congested bottleneck until the congestion

notification is received. Therefore, the notification should be delivered to the senders as soon as

possible to prevent larger amounts of congestion in the network.

The ever-increasing line rates in the data centers raise the bar for how early should the congestion

notification be delivered to the senders. Higher line rates imply that more data can be sent before

receiving any feedback about the state of congestion. When the earliest feedback is delivered after

1 RTT, the amount of data sent before the first feedback received is calculated as the Bandwidth-

Delay-Product (BDP). Higher bandwidth increases the BDP, making more flows fit within a few

BDPs. Such short flows tend to be extremely sensitive to congestion because any queuing in the

network can delay their completion time significantly compared to a non-congested network case.

Ironically, since these flows are short, they also leave less time for congestion control to kick in,

inducing burstiness [164, 170].

For instance, current congestion control algorithms cannot even chime in for RPCs smaller than

a BDP because the feedback is inherently delayed by one RTT, putting more pressure on sustaining

SLOs. These SLOs are likely to evolve and become even more challenging for upcoming workloads

such as disaggregated memory and ML. Hence, sub-RTT feedback loops are the ultimate requirement

for controlling queuing and under-utilization at high line rates.

1.3 In This Dissertation

This thesis presents novel solutions to both fronts (§1.1 and §1.2) for reducing latencies in data

centers. Before diving into these solutions, however, more background on transport layer protocols

and congestion control algorithms – along with a discussion of related work – is provided in Chapter 2.

Next, Chapter 3 introduces NanoTransport, a hardware design for minimal transport layer la-

tency without losing programmability. It is designed to run in an ASIC and programmed (in the

field) using the P4 language, which can achieve ⇠10⇥ faster packet processing compared to FPGAs.

P4 pipelines are already used in modern commercial NICs [112, 132, 166], and an industry group is

creating a standard portable architecture for P4-programmable smart NICs [44]. Inspired by these

architectures, nanoTransport lists a common set of triggering events (e.g., packet arrival, timeouts,

CHAPTER 1. INTRODUCTION 7

duplicate ack) that are shared by a wide range of transport protocols. These events are exposed to

developers via P4’s simpler, widely accepted abstractions, which enable developers to trigger them

in a programmable fashion. The resulting design processes incoming and outgoing packets in fast

PISA pipelines with nanosecond-scale median and tail latencies, o✏oading work from the CPU.

Then, Chapter 4 introduces Bolt, a congestion control algorithm that harnesses the power of

programmable data planes to design an extremely precise congestion control mechanism for ultra-

low latency at very high line rates. It collects congestion feedback with absolute minimum (sub-RTT)

delay and ramps up flows proactively to occupy available bandwidth promptly. To achieve this, it

applies the “packet conservation” principle [70] to the tra�c with accurate per-packet decisions

in P4 [23]. Small, per-packet cwnd changes, combined with the fine-grained in-network telemetry,

help limit the e↵ects of noise in the instantaneous congestion signal. With Bolt, end-hosts do not

make implicit estimations about the severity and exact location of the congestion or the number

of competing flows, freeing them from manually tuned, hard-coded parameters, and inaccurate

reactions.

Finally, a broad discussion of the future directions in low-latency transport layer research along

with the concluding remarks is provided in Chapter 5.

Chapter 2

Background and Related Work

The transport layer is the interface that regulates the interactions between the applications and

the network. However, little research focused on it until the infamous Internet congestion collapses

reported in 1988 [70]. In fact, that same year, Clarke’s retrospective on the Internet design [33]

surprisingly did not even mention congestion. Instead, he highlighted the benefits of not assum-

ing reliable delivery in the network. There was clearly a desire to keep the network simple and

streamlined, and little attention was paid to congestion or packet loss.

It soon became clear that the demand for applications with reliable delivery was increasing, i.e.,

file transfer, and the unreliable datagram service of the Internet Protocol (IP) would not be enough

for this demand. This led to the redesign of the transport layer so that it could handle higher tra�c

volumes while meeting higher performance standards at both end-hosts and the network.

In this chapter, I describe the purpose of the transport layer, various implementations, and

techniques to achieve high performance. I also summarize the vast array of proposed congestion

control algorithms and transport protocols. I compare and contrast many proposals, focusing on

di↵erent approaches to signal congestion and methods to mitigate it in the network. I finish by

summarizing the limitations and weaknesses of existing work, which led to the designs presented in

Chapter 3 and Chapter 4 that drive transport layer latency down towards its physical lower bound.

2.1 The Transport Layer

The transport layer is one of the layers in the OSI (Open Systems Interconnection) [37] and the

TCP/IP (Transmission Control Protocol/Internet Protocol) [26] models, conceptual frameworks that

8

CHAPTER 2. BACKGROUND AND RELATED WORK 9

help us to understand and design computer networks. This layer plays a crucial role in distributed

systems by providing end-to-end communication services for applications running across a network.

The primary functions of the transport layer are

1. End-to-End Communication: The transport layer establishes, maintains, and terminates con-

nections between two devices; typically identified by IP addresses and port numbers. It can

also create connectionless communication (e.g., via UDP - User Datagram Protocol [133]) in

which data is sent as independent datagrams.

2. Segmentation and Reassembly: Large messages or data streams are divided into smaller seg-

ments at the sender for e�cient transmission. Then, these segments are reassembled into the

original message at the receiver before being delivered to the application thread.

3. Reliability: For applications that require reliable and accurate data delivery, protocols like

TCP (Transmission Control Protocol) [19] ensure that data is delivered to the application

correctly and in the correct order. To do this, the sender assigns monotonically increasing

sequence numbers to each segment, allowing the receiver to identify missing segments or to

deliver the segments to the application in the correct order.

4. Flow Control: The transport layer ensures that data is sent at a rate the receiver can handle. If

more data arrives than the receiving application can consume, the receiver can get overwhelmed

and drop data. The transport layer prevents this with a backpressure signal from the receiver

to the sender in which it communicates how much space it has to hold new data, called the

receive window (rwnd).

5. Congestion Control: Similar to flow control, the transport layer also ensures that the amount

of data sent does not overwhelm the packet bu↵ers in the switches and routers along the

network path. For this purpose, the congestion window (cwnd) identifies how much data

can be outstanding; i.e., how much as-yet unacknowledged data can be sent. Based on the

congestion signals collected from the network, the cwnd value is readjusted either to reduce the

amount of outstanding data or to increase it. However, the actual amount of outstanding data

is the smaller value among the rwnd and cwnd, to avoid overwhelming neither the network nor

the destination host. Note that maintaining rwnd and cwnd values separately is just a design

choice for protocols like TCP. Some protocols merge the two concepts into a single state variable

whose value is updated both by the congestion signals and the receiver’s overload feedback,

e.g., Homa [119] and NDP [54].

CHAPTER 2. BACKGROUND AND RELATED WORK 10

6. Error Detection and Correction: The transport layer is also responsible for error detection

and, in some cases, correction. It uses mechanisms such as checksums to verify the integrity

of the data during transmission.

Although these functions were originally implemented in software, it is increasingly common for

Network Interface Cards (NICs) to o✏oad a subset of these functions into hardware. Running some

functionality on the hardware usually helps gain performance benefits and free up precious CPU

cycles. However, hardware implementations typically bake the protocols on the chip, making it

hard and expensive to modify or update them when requirements change or bugs are discovered.

Hence, the battle between software-based and hardware-based designs continues with middle-ground

solutions, e.g., programmable SmartNICs [144].

2.1.1 Software-Based Designs

The default approach to running the packet processing and the transport layer has long been through

kernel implementations in software, e.g., Linux kernel [109] or 4.2BSD [95]. However, it has often

been noted that the default implementations are quite complex and slow. For example, the stan-

dard Linux kernel TCP implementation takes 50µs (median) to deliver an RPC to the application

thread [174]. More recently, the latency demands of data centers have led to new, simpler transport

protocols such as Homa, which can deliver an incoming message from the NIC to a Linux user thread

in just 5µs [128]. But to put this in context, end-host processing would still be 90% of the latency

incurred by a 1KB datagram sent over a 100Gb/s network (as discussed in Chapter 1). Therefore,

there has been a great interest in building lower-latency networking stacks in data centers.

As latency requirements have become more stringent [80, 129], it has become popular to bypass

the kernel altogether and run the transport layer in user space [16, 39, 73, 79, 84, 110, 127, 130,

134, 174]. In this approach, the packet processing latency is reduced with techniques such as lock-

free [16] and zero-copy bu↵ers [16, 97], polling and batching [16, 73], and cache planning [84] using

NIC drivers like DPDK [11].

For example, eRPC [79] carefully optimizes for the common case and reports 850ns wire-to-wire

latency for small 32-Byte RPCs with the Timely [117] congestion control algorithm. Although these

optimizations help eRPC in the best-case scenario, the tail response time struggles during high-load

scenarios.

Alternatively, eBPF – the extended Berkeley Packet Filter [157] – is a technology that allows the

injection of custom code into the Linux kernel to programmatically analyze and modify kernel-level

CHAPTER 2. BACKGROUND AND RELATED WORK 11

events and data. It allows users to attach small programs to certain hooks in the networking stack

and filter or modify packets with low processing overheads [55, 78, 173].

Despite the extensive optimization e↵orts, all of the proposals above remain north of a micro-

second latency threshold with MTU-size packets in reliable connections. This is mainly due to the

overhead of processing the packets on general-purpose CPU cores [24]. In contrast, domain-specific

accelerators (i.e., SmartNICs) can free up cycles from the main processor and reduce the time to

deliver data to/from the application threads from/to the wire. The performance benefits of these

hardware accelerators are vital for the stringent requirements of dynamic workloads.

2.1.2 Hardware-Based Designs

O✏oading the transport layer onto hardware enables packet processing at the line rate while the main

processor focuses only on the application processing. In addition, processing latency becomes fixed

for each packet, significantly reducing the tail latency. The most common use case for such a high-

performance system is the Remote Direct Memory Access (RDMA) [146]. The RDMA verbs read

or write data to/from a remote device’s memory without intermediate copy operations. To support

this use case, modern NICs typically support RDMA over Converged Ethernet (RoCE) [111] at the

transport layer, which implements DCQCN [175] as the only congestion control algorithm.

An alternative to RoCE is to o✏oad the TCP stack onto NICs. In such designs, either a subset

of the functionalities [48, 83, 118, 120] or the entire stack [40, 89, 148, 165] can be o✏oaded. For

instance, AccelTCP [120] leverages programmable NICs to accelerate only the TCP connection setup

and teardown operations. In contrast, Dagger [93] o✏oads the entire RPC stack while running only

a UDP-based transport on FPGA.

Although hardware o✏oading solutions repeatedly report nanosecond-scale latencies, they usu-

ally pick a certain transport protocol and a congestion control algorithm. Yet, hundreds many

algorithms and protocols have been proposed in the literature, and each one optimizes performance

in di↵erent scenarios, i.e., incast with extremely short flows vs. distributed ML training with long-

lived flows. Then, how can hardware architects decide which algorithm is the best to bake on the

chip?

Making the NIC programmable allows network owners to decide which protocol and algorithm

to implement on the hardware so that they can optimize performance specifically for their workload.

To enable programmability, smartNICs typically utilize extra processors on board [104], but this

solution creates a bump in the wire, adding extra cycles for the NIC interconnect.

CHAPTER 2. BACKGROUND AND RELATED WORK 12

In contrast, Tonic [8] and FlexTOE [148] propose partial programmability on the data path.

However, these proposals require Verilog [64] and eBPF [157] programming, respectively, which

brings extra di�culty in implementing congestion control policies. Instead, P4 [23] – a widely

accepted domain-specific language – is designed specifically for expressing packet-processing behavior

in a much simpler way. It empowers networking researchers and developers to experiment with new

features and protocols both at the sender and receiver as quickly as possible. In addition, research

on verifying packet processing using P4 [41, 106, 126, 152] is actively underway. Hence, leveraging

this simple and widely accepted language promises rapid hardware o✏oading of custom algorithms

or protocols in a flexible way while reducing transport latency down toward its physical limits.

The work in Chapter 3 leverages this simplicity, and wide adoption of the P4 language to enable

rapid hardware o✏oading of custom algorithms or protocols while being inspired by the primitives

described in previous work on programmable transport layers.

2.2 Congestion Control Algorithms and Transport Protocols

The congestion control research community has been very active since the first paper on this topic was

published in 1988 [70]. Every year, many new algorithms are proposed to improve the performance

of modern workloads. It is fair to say that no clear winner has emerged, in large part because of

the evolving requirements of workloads, including flow and message sizes, link bandwidths, latency

between end-hosts, bu↵er sizes, fan-in/fan-out ratios, etc.

In addition, a network operator may have di↵erent performance objectives based on the type of

application being prioritized over the network. For example, an application that runs many long-

lived low-priority flows, such as backup tra�c, may try to optimize the average throughput achieved.

On the other hand, a lightweight application with many small messages such as financial trading

would focus more on the median or tail latency. As the networks and workloads evolve, it would

be reasonable to expect more algorithms and protocols to emerge, making it even more di�cult to

reach a global consensus.

At a high level, the existing congestion control algorithms can be classified based on the entity

that drives them. Specifically, traditional congestion control algorithms rely on the senders to collect

congestion signals from the network – usually reflected by the receivers – to decide on the cwnd size or

the transmission rate. In contrast, there is a relatively newer approach for congestion control where

the receiver selects senders for transmission based on the load at the receiver. Moreover, switches

can decide on scheduling, congestion signaling, or pausing specific flows as well to manage congestion

CHAPTER 2. BACKGROUND AND RELATED WORK 13

in the network. Below, I discuss the underlying mechanisms, assumptions, and weaknesses of these

approaches.

2.2.1 Sender-Driven Algorithms

Sender-driven congestion control algorithms rely on senders to collect a congestion signal from the

network. These signals are usually performance measurements or events that take place in the

network, which typically accumulate at the receiver in the forward direction and are reflected to the

sender. There are three popular signals in use today:

1. Packet Loss, i.e., the absence of an acknowledgment from the receiver. TCP Reno [52] at-

tributes this signal to a packet drop at a switch due to congested bu↵ers and cuts the cwnd

size by half to allow the switch drain the congested queue. TCP CUBIC [137], the default

algorithm in Linux environments, also uses this signal but di↵ers from Reno in how cwnd is

increased when no packet loss is observed.

2. Explicit Congestion Notification (ECN), i.e., single bit on packet headers that are marked by

switches whose bu↵er occupancy is above a threshold. Algorithms such as DCTCP [4] and

Microsoft’s DCQCN [175] calculate the frequency of incoming ECN markings to infer how

congested switches are. Then, they reduce cwnd or transmission rate, respectively, until this

frequency drops down to a certain level.

3. Round Trip Time (RTT), i.e., the time it takes for the acknowledgment of a data packet to

come back to the sender. Since this value increases when the network is congested, the senders

of algorithms like Swift [91], BBR [25], Timely [117], and TCP Vegas [21] use the changes in

RTT to infer the amount of congestion in the network.

All three signals are noisy, imprecise surrogates, and fail to accurately capture the amount and

location of the congestion in the network. These shortcomings constitute a significant barrier to

developing a high-throughput, low-latency congestion control algorithm for data centers. For in-

stance, a packet drop is an event that takes place only after the congestion is well underway and the

latency is at its maximum, which is too late for low-latency applications. In addition, packets may

be dropped due to equipment failure, which adds noise to the congestion signaling. Although ECN

can signal increasing queue occupancy before reaching the maximum, it is just a binary signal and,

as such, does not convey how congested the switch is apart from being above the threshold.

CHAPTER 2. BACKGROUND AND RELATED WORK 14

RTT is very e↵ective at capturing the queuing delay at the bottleneck accurately, but it also cap-

tures non-bottleneck delays experienced between the two end-hosts. To minimize this e↵ect, Google

uses extremely precise hardware timestamps on the end-hosts and avoids inadvertently measuring

end-host processing latency [91, 110]. However, this technique is not su�cient to avoid measuring

delays at the non-bottleneck switches in the network. Measuring both the bottleneck and non-

bottleneck delays as the congestion signal prevents senders from accurately determining how much

to slow down when high RTT is observed. As a result, operators heuristically tune algorithm param-

eters that regulate how much the cwnd is reduced [21, 91, 117]. This is a time-consuming process and

needs to be repeated every time the algorithm is run in a di↵erent environment or with a di↵erent

workload.

To overcome the limitations of surrogate signals, HPCC [102] proposed using INT (Inband Net-

work Telemetry) [88] which can carry the most accurate congestion information possible. With

INT, the instantaneous port state is reported precisely by every switch the data packet traverses.

The INT header includes packet timestamps, some counter values, and queue occupancy, which is

the only direct measure of congestion by definition. It can even be optimized to be collected only

from the bottleneck to reduce the number of bytes reserved for congestion signaling on the packet

header [17].

HPCC uses the INT information to calculate the utilization of each link every RTT so that

congestion reaction simply becomes cwnd scaling to match the utilization target. Since it aims to set

cwnd to its fair share at once, redundant signaling is prevented by calculating utilization only once

every RTT over the RTT-wide aggregated telemetry data. However, using aggregated data as the

signal can create a mismatch between the actual utilization and the measured one in a data center,

where congestion-inducing events (i.e., flow arrivals or completions) happen almost every RTT.

Similarly, Poseidon [161] replaces RTT with the INT data for the congestion signal in Swift’s

algorithm. By extracting the bottleneck queue occupancy, Poseidon senders compare this accu-

rate signal to a target occupancy and apply the Additive Increase, Multiplicative Decrease (AIMD)

method appropriately on the cwnd until the target is matched. Although this is a great advancement

in the collection of precise congestion signals, Poseidon collects these signals through the acknowl-

edgments reflected by the receiver. Therefore the feedback cannot be collected in less than one RTT

similar to Swift and HPCC, which makes it di�cult to react to congestion promptly as discussed in

Chapter 1.

Several other approaches have similar ideas about how to collect precise congestion signals and

CHAPTER 2. BACKGROUND AND RELATED WORK 15

reduce feedback delay. For example, XCP [82] and RCP [42] also propose congestion feedback

generated by the switch. Switches wait for an average RTT before calculating congestion control

responses, which are stamped on the data packet and reflected on the ACK by receivers. However,

this approach imposes a control loop delay that is at least one RTT as well. The Sub-RTT Con-

trol (SRC) mechanism motivated in §4.2 reduces this delay and helps senders make more frequent

congestion control decisions with high granularity.

FastTune [172] attempts to shorten the feedback delay as well. Similar to HPCC, it uses pro-

grammable switches for precise congestion signals and calculates link utilization over an RTT to

multiplicatively increase or decrease cwnd. For shorter feedback delay, it pads the INT header onto

ACK packets in the reverse direction rather than the original data packet. ExpressPass [29] utilizes

the control packets in the reverse direction too, similar to how Backward ECN (BECN) works [3].

However, forward and reverse paths for a flow are not always symmetrical due to ECMP-like load

balancing or flow-reroutes in data centers. This makes approaches like ExpressPass and BECN less

practical for real-world deployments.

FastLane [168] sends notifications from switches directly back to the senders with dedicated

control packets. This prevents the congestion notification from being delayed by the congestion

itself. However, notifications are generated only with packet drops, and the timing of this event

is too late for low latency congestion control in data centers. In contrast, Annulus [140] uses

standard QCN [65] packets from switches with quantized queue occupancy information as soon as

the queue occupancy exceeds a threshold. Since these packets are not L3 routable, Annulus limits its

scope to detecting bottlenecks only one hop away from senders. Exposing precise queue occupancy

information like QCN, but from every switch in the network is an obvious next step.

In addition to e�cient feedback delivery mechanisms, the content of the feedback also determines

how well senders can mitigate congestion. For example, FCP [53] uses budgets and prices to balance

the load and the tra�c demand. Switches calculate the price of the link based on the demand,

while senders declare flow arrivals or completions. However, the required time series averaging and

floating-point arithmetic make the switch calculation infeasible for packet processing at a high line

rate. Instead, §4.3.3 presents an instantaneous load measurement technique as a much more practical

approach, using simple P4 primitives without a time series state and complex arithmetic.

Finally, switch feedback has been studied for wireless settings as well. For instance, ABC [50]

access points (APs) mark packets for cwnd increments or decrements with an RTT-based control

loop. In contrast, Zhuge [114] modifies the wireless APs to inject congestion signals onto packets

CHAPTER 2. BACKGROUND AND RELATED WORK 16

in the reverse direction so that senders can detect congestion in less than one RTT. Adapting

similar mechanisms feasibly for dynamic data center workloads is a promising direction for congestion

control.

2.2.2 Receiver-Driven Algorithms

In addition to the congestion control algorithms discussed above, there are also receiver-driven

approaches such as NDP [54], pHost [49], and Homa [119]. They di↵er from sender-driven approaches

in that they require receivers to allocate/schedule credits based on the demand from senders.

For example, NDP [54] is a protocol that aims to reduce the tail latency of network messages by

minimizing packet drops and having dropped packets retransmitted in a timely fashion. The NDP

receiver explicitly sends PULL packets to allow a sender to transmit a data packet. Those PULL

packets are paced such that the allowed packets would arrive at the exact rate of the bottleneck link

bandwidth. In the case of multiple messages being transmitted at the same time, each arriving data

packet would trigger a PULL for the corresponding message so that new data packets are allowed

in a round-robin fashion among messages. This approach is based on the assumption that if a data

packet leaves the network, a new one can be inserted without overwhelming it.

For retransmission acceleration, NDP uses the concept of “packet trimming” at the switches, in

which data packets that do not fit in the bottleneck queue are trimmed and the headers are for-

warded to the receiver with high priority. The receiver then quickly sends negative acknowledgments

(NACK) to let the sender know about this loss. This mechanism prevents relying on long timeouts.

In contrast, Homa [119], published a year after NDP, argues that packet loss is not a ma-

jor concern in modern data centers because of the large and dynamically shared bu↵er spaces in

switches [128]. Instead, the authors highlight the need for smart message scheduling at the end hosts,

i.e., SRPT [143], that optimizes the tail latency [123]. Therefore, instead of a round-robin pulling

mechanism, the Homa receiver sends GRANT packets to the message with the smallest remaining

size no matter which message the incoming data packet belongs to. When an RPC is fully granted,

the Homa receiver starts sending grants for the next RPC before the current RPC is finished. This

approach proactively utilizes the link.

Moreover, Homa authors claim that packet trimming is an impractical feature for commercial

fixed-function switching ASICs. Instead of trimming, Homa uses priority queuing primitives that are

already available in modern networks. Smaller messages thus have a higher priority in the network,

allowing them to be completed sooner.

CHAPTER 2. BACKGROUND AND RELATED WORK 17

Schemes that use priority queues on switches have been proposed to improve the scheduling

performance of the network by approximating SRPT-like behavior [6, 13, 57, 119]. Alternatively,

R2P2 [90] approximates the join-bounded-shortest-queue (JBSQ) policy on switches to load-balance

incoming RPCs to the most available server. These approaches work well for managing congestion

at the last hop because receivers and Top-of-Rack (ToR) switches have good visibility into this link.

Unfortunately, the last hop is not always the bottleneck for a flow, especially when the fabric is

over-subscribed [149].

In addition to packet scheduling, there are also receiver-driven RPC scheduling algorithms, such

as Breakwater [30], that avoid overloading in low latency services by issuing credits to RPCs based

on receiver-side queuing delay. Such overload control mechanisms prevent senders from transmitting

RPCs that will not get credit for the transmission of the entire RPC at once. However, they add

extra network latency for short RPCs whereas these RPCs could have been immediately transmitted

without waiting for one RTT to receive transmission credit.

2.2.3 Switch-Driven Algorithms

The entity that decides when to send packets or RPCs is not always the sender or the receiver. There

are also per-hop flow control mechanisms such as BFC [51] and PFFC [160] that pause queues at the

upstream switches when a bottleneck gets congested. This early notification mechanism prevents

the bottleneck queue from overflowing, reducing the chances of packet loss and network congestion.

Queue pausing is also used in conjunction with Quality of Service (QoS) mechanisms to prioritize

certain types of tra�c over others. By pausing or slowing down lower-priority queues during times

of congestion, higher-priority tra�c (such as real-time applications or critical data) can be given

precedence.

While queue pausing can be a useful mechanism in managing network congestion and optimizing

performance, it has potential disadvantages. For example, in scenarios where congestion is short-lived

and sporadic, queue pausing may not be e↵ective. Pausing queues in response to brief congestion

periods may lead to unnecessary delays and decreased throughput during normal network conditions.

More importantly, queue pausing may lead to head-of-line blocking or deadlock issues, which are

well demonstrated for PFC [66]. If a switch link is paused by one of the downstream switches, all

the packets using this link are paused even if they are destined for a di↵erent switch after the next

hop. Such issues are resolved by keeping the per-flow state on switches in BFC and PFFC, but this

can be overwhelming in terms of the memory requirements per switch in a data center.

CHAPTER 2. BACKGROUND AND RELATED WORK 18

2.3 Summary and Remarks

Internet congestion occurs when switch or end-host bu↵ers are overrun. However, no provisions

were made for the switches to signal congestion levels in the early days of the Internet because it

was not originally designed with congestion in mind. And so when TCP congestion control was first

deployed, it used packet loss as its signal because this did not require a change to the switches.

Obviously, packet loss is not a good enough signal for modern data center workloads. It is

generally too coarse and arrives too late. Instead, there is a much more accurate and direct signal,

i.e., the current occupancy of the bu↵ers where the congestion takes place. Switches must keep track

of this value for their bookkeeping anyway and the newer ones can expose it to end-hosts as well.

The availability of this precise signal presents a new opportunity, which is exploited in the work

presented in Chapter 4.

The next step is to deliver the signal to the decision-makers as quickly as possible. With tradi-

tional congestion control methods, the earliest a sender can react to congestion is one RTT after it

occurs. Although prior work has attempted to generate sub-RTT feedback, it fails to extract this

signal with low overhead and at high speeds. Moreover, a theoretical framework for understanding

the benefits of sub-RTT feedback is lacking in the literature. This gap is addressed in Chapter 4

where delivering a precise congestion signal in less than one RTT is analyzed in depth.

As workloads evolve, there is no doubt that new, improved congestion control algorithms will be

developed. However, it will be hard to deploy them if the networking equipment is fixed-function.

Many NICs and switches have recently become more programmable and this trend is expected to

continue [27]. Hence, there is an opportunity to create programmable transport layers, which can

be programmed in the field, allowing new and improved algorithms to be rapidly deployed with

the lowest processing latency possible. In Chapter 3, I describe novel primitives to program the

transport layer in the NICs.

Chapter 3

Programmable NICs for Lower

Transport Layer Latency

Transport protocols can be implemented in the Network Interface Card (NIC) to increase through-

put, reduce latency, and free up CPU cycles. If the ideal transport protocol were known, the

optimal implementation would be simple: bake it into fixed-function hardware. However, transport

layer protocols and data center workloads continue to evolve, with innovative algorithms and more

demanding applications introduced every year.

One way in which each transport protocol di↵ers is in the relative importance given to throughput

and latency (median or tail). For example, many distributed applications launch multiple RPC

requests to di↵erent servers at the same time. If they must wait for all of the RPCs to return before

making progress, their overall performance would be dictated by the slowest RPC response time.

Even if an RPC request returns a result quickly on average, there are usually some outlier events

that cause the RPCs to return slow, e.g., congestion in the network or contention in the end-host

memory. These unusually long response times are called the tail latency of the system. As the

number of cascaded RPCs increases, the likelihood of a long tail latency increases, defining the end-

to-end performance of the entire system [38]. Hence, the transport protocols for such applications

are primarily expected to minimize tail latency.

The best transport layer mechanism to limit tail latency is likely best determined by a cloud

service provider that has the best view of all the performance demands in its unique data cen-

ter. However, if the transport protocol is baked into fixed-function hardware, it is a costly and

19

CHAPTER 3. PROGRAMMABLE NICS FOR LOWER TRANSPORT LAYER LATENCY 20

time-consuming task to modify it when the performance demands change or new mechanisms are

proposed. This issue can be avoided by making the hardware programmable such that the service

providers can quickly change the packet processing logic while running it on high-speed domain-

specific hardware [100, 104].

However, to run the hardware at the line rate, the packet processing pipeline must be as stream-

lined as possible with a minimal instruction set. Therefore, the smallest set of necessary packet

processing operations should be carefully identified for high performance and enough generality.

This observation prompted the authors of Tonic [8] to propose a programmable hardware design

for transport protocols, which “exploits the common patterns in transport logic to create reusable

high-speed hardware modules”. Their design assumes the transport layer will be implemented on an

FPGA and that the programmer will use Verilog [64] – a hardware-design language – to implement

a new algorithm. Since Verilog requires a steep learning curve, the authors also provide an NS3 [138]

model to help users design new protocol layers.

In Tonic’s design, the kernel o✏oads the connection state and packet processing to the FPGA-

based NIC after the CPU establishes a transport connection. Its prototype utilizes ring bu↵ers and

bitmaps to keep track of the connection state on hardware while achieving 100Gb/s with 128-Byte

packets and processing a packet in about 100ns.

However, while some NICs are implemented in FPGAs like Tonic, Application Specific Integrated

Circuits (ASICs) are much more common because of their higher performance, lower power, and

lower cost. In this chapter, I present my design of a programmable transport layer inspired by Tonic,

prototyped on an FPGA, but optimized for implementation in an ASIC. It is called nanoTransport,

and it extends Tonic in four ways.

First, nanoTransport is designed to run in an ASIC, as noted above, and programmed (in the

field) using the P4 language [23]. ASICs can achieve ⇠10⇥ faster clock frequencies, thus faster packet

processing, compared to FPGAs. In addition, P4 pipelines are already used in modern commercial

NIC ASICs [112, 132, 166], and an industry group is creating a standard portable architecture for

P4-programmable smartNICs [44].

Second, a wide range of transport protocols share a common set of triggering events (e.g., packet

arrival, timeouts, duplicate ack), and nanoTransport exploits P4’s simple and widely accepted ab-

stractions for them. It enables interfaces to trigger common events in a programmable fashion,

unlike how Verilog implements each event individually for every protocol implementation. This is

inspired by the event-driven P4 packet processing framework introduced in [60].

CHAPTER 3. PROGRAMMABLE NICS FOR LOWER TRANSPORT LAYER LATENCY 21

Third, Tonic is designed to o✏oad only the sender-side protocol. In contrast, nanoTransport

implements both the sender and the receiver clients of a transport protocol while not needing the

main processor to establish a connection. This way, it provides an end-to-end solution for transport

layer o✏oading.

Finally, nanoTransport’s design is streamlined. It is designed to process packets with di↵erent

transport protocols in less than 35 cycles roundtrip. This implies a packet processing latency of

less than 11ns with a targeted clock frequency of 3.2GHz, an order of magnitude lower latency (tail

and median) compared to Tonic. Moreover, its streamlined design allows issuing a new packet every

2.6ns and achieving a 200Gb/s line rate. §3.5.1 discusses more about synthesizing this design with

an ASIC library.

The primary goal of this work is to reduce the transport-related processing latency with nan-

oTransport. The latency for delivering a message to the application thread after the transport

layer involves mechanisms such as core selection and thread scheduling. These processes are be-

yond the scope of nanoTransport. Therefore, to demonstrate a complete programmable system,

nanoTransport is prototyped on the open-source nanoPU design framework [62], which introduces

a message interface directly to the CPU register file and a hardware thread scheduler on a RISC-V

architecture [61]. Using the open-source nanoPU artifact for a complete system allows the research

community to experiment with nanoTransport’s design, try out new transport layer protocols, and

improve upon this work. However, nanoTransport’s programmable transport layer is not bound to

the nanoPU; it could be used as a standalone, P4-programmable pipeline in any NIC that o✏oads

the transport layer to hardware, e.g., the RDMA processing pipeline in a modern NIC.

In summary, the main contributions of this work are as follows:

1. It defines interfaces to a common set of events in transport protocols that can be used as

primitives for a programmable solution.

2. It shows that transport layer processing can be e�ciently expressed in the P4 programming

language.

3. It presents and evaluates the first P4 programmable transport layer in hardware, nanoTrans-

port, which could be added to the nanoPU system, or deployed standalone in an RDMA NIC

pipeline.

4. It provides an open-source FPGA-based nanoTransport prototype based on Firesim [81], which

runs at 200Gb/s, even for small packets, while maintaining less than 100 Bytes of state per

CHAPTER 3. PROGRAMMABLE NICS FOR LOWER TRANSPORT LAYER LATENCY 22

message.

5. NanoTransport can deterministically process small packets, i.e., 80 Bytes, in 11ns (median

and tail latency, including both the ingress and egress paths), while running at 3.2GHz. This

latency is three orders of magnitude lower than common software-based implementations and

an order of magnitude lower than Tonic, which runs at 100MHz due to frequency limitations

of the FPGA environment.

6. This work also provides a behavioral model of nanoTransport in NS3 to help designers evaluate

new transport protocols and algorithms at scale before programming the hardware.

The remainder of this chapter describes nanoTransport’s building blocks in §3.1, its design details

in §3.2, its FPGA-based prototype implementation in §3.3, and evaluations of its prototype in §3.4.

Further discussion about use-cases, feasibility, and limitations of programmable hardware transport

layers is provided in §3.5.

3.1 Transport Layer Dissected

Despite their di↵erences, most transport protocols share a large set of features. In this section, I

explore and enumerate common features that are, later, used as the basis of the nanoTransport

design.

3.1.1 Protocol Taxonomy

Broadly speaking there are two types of transport protocols: Wide Area Network (WAN) protocols

such as TCP NewReno [52], CUBIC [137], and BBR [25]; and data center (DC) protocols, such as

RoCE [111], DCQCN [175] and Timely [117].

WAN protocols are designed for long-lived, reliable bi-directional byte streams, and their pri-

mary performance metrics are usually throughput and fairness. Connections are established by a

handshake that installs a per-connection state at both ends. This state is then maintained for the

duration of the connection. Because WAN RTTs are typically 1-100ms, a microsecond level latency

improvement in the end-host processing does not add much value. Therefore, nanoTransport is not

designed for WAN transport protocols.

On the other hand, DC protocols are mostly used to exchange small messages between servers [10,

CHAPTER 3. PROGRAMMABLE NICS FOR LOWER TRANSPORT LAYER LATENCY 23

139]. RTTs are a few microseconds, and latency-sensitive applications can benefit greatly from fur-

ther microsecond-level reductions in the end-host processing time [54, 57, 119]. Hence, nanoTransport

focuses on latency-sensitive, reliable, message-based transport protocols, primarily for data centers.

Specifically, nanoTransport is designed to allow a user to program a low-latency, reliable, one-way

messaging service.

A (beneficial) consequence of small message communication is that no persistent connection state

is required. This reduces the amount of memory a NIC needs to track currently active messages,

making faster and lower-power single-chip ASIC solutions possible.

3.1.2 Building Blocks

NanoTransport’s programmable hardware transport layer has two service interfaces: Below, it ex-

changes Ethernet frames with the Ethernet MAC. Above, it exchanges complete, reassembled, re-

liable messages with a CPU core or RDMA engine. Regardless of the protocol specifics, a reliable

message-based transport protocol on nanoTransport must:

1. Split an outgoing message into one or more packets. Packets are stored for retransmission

until successfully delivered to the receiver.

2. Reassemble incoming packets back into messages. Packets arriving out of order are correctly

resequenced during reassembly.

3. Maintain timers to trigger packet retransmissions or to cancel messages upon repeated failures.

4. Maintain state for each ongoing message that can, for example, allow congestion control logic

to decide which packet to send next, and when.

5. Generate control packets to signal message state or congestion, for example, ACK, NACK,

and GRANT.

A key observation of this work is that only the last two functions (maintaining per-message state

and generating control packets) require programmability to support di↵erent congestion control

algorithms. The other capabilities are fixed and common to all reliable message-oriented transport

protocols I have encountered.

Tonic made a similar observation [8] and elected to use bitmaps, which keep track of the mes-

sage state. Those bitmaps are, then, used to determine which packet to send next or retransmit.

CHAPTER 3. PROGRAMMABLE NICS FOR LOWER TRANSPORT LAYER LATENCY 24

N
e
t
w
o
r
k

Core N

Packet Generator

 Ingress Timer

Egress Timer

Reassembly Module

Packetization Module

Timeout

Timeout

Schedule/Cancel

Schedule/Cancel

CreditTx and/or Delivered Events

CtrlPkt Event

Pkts

Pkts Msgs

Msgs

Programmable
Block

Fixed Function
Block

Packet Path

Message Path

Extern/Events

LEGEND

GetRxMsgInfo
Extern

4

5

6

7

8

9

10

Programmable NIC

RDMA
Engine

Core 1

1

11
PISA Egress
Pipeline

2

3

PISA Ingress
Pipeline

A
r
b
i
t
e
r

Figure 3.1: NanoTransport architecture design. Processing steps are numbered chronologically.

NanoTransport keeps these bitmaps in the reassembly and packetization modules, next to the asso-

ciated packet data. Di↵erent protocols di↵er in how they modify the bitmaps when data or control

packets are sent and received, how they detect a packet loss, and how they handle a lost packet.

A nanoTransport programmer determines how events are triggered and processed (e.g., data packet

arrival, packet loss detection, packet acknowledgment) via P4 externs [158] and by extending P4

metadata fields. §3.2 describes this design in more detail.

3.2 NanoTransport Architecture

Figure 3.1 shows the nanoTransport architecture. The pipeline sits between the external Ether-

net packet interface (the MAC), with which it exchanges Ethernet frames, and the CPU core (or

RDMA engine), with which it exchanges fully assembled, ready-to-use messages. The pipeline is

self-contained and handles all aspects of the transport layer on behalf of the CPU. The CPU is

needed to configure and initialize the pipeline, but the CPU is not involved in processing individual

packets to minimize latency.

The design is deeply pipelined to process many packets in parallel with maximum throughput,

but not too deep to keep latency low. The ingress and egress pipelines each contain a mix of fixed and

programmable modules. The two pipelines also operate independently, other than when triggering

a few well-defined events described in §3.2.4.

Let’s start by walking through the high-level steps to process arriving and departing packets

and then dive deeper into each stage: An arriving packet at the NIC 1 is first processed by the

programmable ingress pipeline, where protocol-specific logic determines how the packet will be

CHAPTER 3. PROGRAMMABLE NICS FOR LOWER TRANSPORT LAYER LATENCY 25

processed. The GetRxMsgInfo extern is then called 2 . This extern uses flow identifiers such as

the 5-tuple or unique message ID to fetch (or allocate) per-message state in the reassembly module.

The per-message state is common to all protocols and is described in §3.2.3. Depending on the

protocol, the ingress pipeline may then also choose to trigger a CtrlPktEvent 3 that causes the

packet generator to generate a control packet (acknowledgment, grant or NACK, etc. depending

on the protocol) in response to the incoming packet 4 . The original data packet is passed to

the reassembly module 5 , which stores it and checks if the message is complete. The reassembly

module maintains and updates a per-message timer for incoming messages 6 . Should a timer expire

(indicating message reception failure), all the state for the message is garbage collected. Once all of

a message’s packets have been received, they are reassembled in the correct order and forwarded as

a full message to the CPU (or the RDMA Engine) 7 .

In the egress direction, when a message is sent from an application thread 8 , it is stored in the

packetization module. The packetization module divides the message into MTU size segments and

initializes per-message state variables. A per-message retransmission timer is set 9 ; if it expires,

some of the message’s packets may be retransmitted. When the packetization module sends a

packet, it is enqueued by the arbiter 10 , which schedules its departure alongside outgoing packets

from the packet generator. Finally, packets pass through the programmable egress pipeline 11 ,

where protocol-specific headers are added before the packet is sent to the network.

Next, I describe each block in detail and provide the API signatures for event handling.

3.2.1 Programmable Components

The nanoTransport architecture contains the following programmable modules: (I) the P4 pro-

grammable PISA pipelines and (II) the packet generator module.

PISA Pipelines

A PISA (Protocol Independent Switch Architecture) [20] pipeline provides a simple match-action

abstraction. It allows fast and flexible packet processing by executing P4 programs [23]. The nan-

oTransport design dedicates separate PISA pipelines for ingress and egress. Each pipeline contains a

standard P4 library (core.p4), as well as several custom externs to support nanoTransport-specific

event handling logic. Developers program the pipelines to parse and emit protocol-specific headers

and trigger the predefined event-handling logic in the fixed function blocks.

A typical ingress pipeline flow starts with a packet arriving at the parser, followed by the match

CHAPTER 3. PROGRAMMABLE NICS FOR LOWER TRANSPORT LAYER LATENCY 26

tables. The tables are programmed to match protocol-specific events and this is where most protocol-

specific functions are performed. For example, an ingress table may be programmed to match a flag

field in the transport header; if it is a data packet, it is forwarded to the reassembly module while

generating a control packet (e.g., an ACK) in response. If the incoming packet is a control packet

(e.g., an ACK packet from the remote end), the ingress pipeline processes it and then discards it.

After ingress processing, data packets arrive at the reassembly module, carrying with them the

metadata shown in Listing 3.1. The metadata includes the IP address and port number of the

remote sender as well as a unique message ID (tx msg id) chosen by the sender. The three fields

are used to map the message to a locally unique ID (rx msg id). The pkt offset field indicates

the o↵set of this packet within the message to which it belongs.

Listing 3.1: Metadata passed from the ingress pipeline to the reassembly module, along with the packet

payload.

1 struct ingress_metadata_t {

2 IPv4Addr_t remote_ip;

3 PortNo_t remote_port;

4 bit<16> msg_len;

5 bit<8> pkt_offset; // Similar to TCP seq no

6 PortNo_t local_port;

7 MsgID_t rx_msg_id; // Set by the receiver

8 MsgID_t tx_msg_id; // Set by the sender

9 bool is_last_pkt;

10 }

Listing 3.2: Metadata passed to the egress pipeline along with the packet payload.

1 struct egress_metadata_t {

2 IPv4Addr_t remote_ip;

3 PortNo_t remote_port;

4 bit<16> msg_len;

5 bit<8> pkt_offset;

6 PortNo_t local_port;

7 MsgID_t tx_msg_id;

8 bit<16> credit; // Similar to TCP cwnd

9 bit<8> rank; // Determines packet priority

10 bit<8> flags;

11 bool is_new_msg;

12 bool is_rtx;

13 }

CHAPTER 3. PROGRAMMABLE NICS FOR LOWER TRANSPORT LAYER LATENCY 27

The egress pipeline’s main job is to create the correct packet header for an outgoing packet. The

arbiter hands the raw packet payload to the egress pipeline, which constructs the correct packet

headers using the accompanying metadata. The egress metadata is shown in Listing 3.2.

The credit value indicates the highest packet o↵set that is currently authorized to be sent for

this message. The rank is the queueing priority of the outgoing packet. For example, the credit

value in Homa signals which packets are granted by the receiver, and the rank value determines

which in-network priority queue should be used by this packet. The first packet in a message has the

is new msg flag set to initialize the message processing logic. The is rtx flag identifies retransmitted

packets, in case the protocol needs to process these packets di↵erently.

In addition to header processing, transport protocols maintain protocol-specific state in the PISA

pipelines. For example, NDP keeps some state in the ingress pipeline to identify which packet to

request in a PULL control packet. While it is a common misconception that P4 cannot be used to

implement stateful logic, read-modify-write (RMW) “register” operations are frequently exposed to

the programmer for stateful data plane applications in a match-action pipeline. §3.2.2 describes the

stateful primitives in the nanoTransport PISA pipelines and §3.4.3 discusses their feasibility.

Packet Generator

The developer programs the packet generator to send protocol-specific control packets, such as

NACK packets in NDP [54], GRANT packets in Homa, and INT acknowledgments in HPCC [102].

The module is triggered by CtrlPktEvent extern call from the ingress pipeline, which is essentially

a mirrored packet carrying the metadata shown in Listing 3.2. The metadata set by the ingress

pipeline determines which control packet(s) to generate.

Di↵erent transport protocols generate control packets at di↵erent times and rates, and in di↵erent

formats. For example, NDP paces its outgoing PULL control packets to tell the sender when to

resend trimmed packets. The PULL packets must be sent at specific times. In contrast, HPCC

piggybacks a template to outgoing packets in the reverse direction, to carry INT reports added by

switches along the path. Fortunately, the range of operations is quite small.

3.2.2 Stateful Primitives

This section describes the stateful primitives that can be used by the programmer in the ingress

and egress PISA pipelines to develop protocol-specific functionality. After a survey of low-latency

transport protocols, I identified a list of primitives that would be required to implement a wide range

CHAPTER 3. PROGRAMMABLE NICS FOR LOWER TRANSPORT LAYER LATENCY 28

of algorithms. These primitives implement various read-modify-write (RMW) operations and are

exposed to the data-plane programmer as P4 externs. Sivaraman et. al [150] propose the following

set of stateful primitives that are useful across many data plane applications:

• RW – Read or write a state variable.

• RAW – Add a value to OR overwrite a state variable.

• PRAW – Perform RAW on state variable only if the provided predicate evaluates to true,

otherwise leave it unchanged.

• ifElseRAW – One RAW for true and one for false predicate.

Note that for some transport protocols (e.g., NDP), these operations are su�cient. However,

other protocols (e.g., Homa) require more sophisticated stateful primitives, such as multi-ported

memory, to share state variables across pipeline stages, and between ingress and egress pipelines.

Hence, nanoTransport is designed with a multi-ported memory system.

In addition, nanoTransport also includes a priority scheduler, which is exposed to the programmer

as a P4 extern. The scheduler can store and compare multiple stateful objects using a user-provided

priority value and predicate function. The programmer can insert and remove objects, and update

the priority of existing objects. When called, the scheduler will return the highest priority object

for which the predicate evaluates to true. §3.3.4 describes how this priority scheduler and other

primitives can be used to implement Homa’s SRPT message-granting logic. This primitive will be

useful for other protocols as well [6, 49, 57].

NDP and Homa are the two protocols that together require all the identified primitives. Therefore

nanoTransport’s performance is evaluated on these protocols. §3.5.2 further discusses implementing

other protocols on nanoTransport.

3.2.3 Reassembly Module

The reassembly module is responsible for delivering message data in the correct order. If the pack-

ets within a message arrive out of order (e.g., because of packet-by-packet multipath routing, or

retransmission), the reassembly module correctly resequences them before handing the message to

the application thread. Since the packet reordering logic is protocol-agnostic, nanoTransport han-

dles it with a fixed function block. The algorithm of the reassembly module is presented with a

simplified pseudocode in Algorithm 1.

CHAPTER 3. PROGRAMMABLE NICS FOR LOWER TRANSPORT LAYER LATENCY 29

Algorithm 1: The processing logic for the Reassembly Bu↵er

1 Control ProcessNewPacket(Packet* pkt, ingress metadata t meta):
2 if m rx msg id table.match (meta.rx msg id).hit () then

// Record pkt in buffer
3 m bu↵ers[meta.rx msg id][meta.pkt o↵set] = pkt;

// Mark the packet as received
4 m receivedBitmap[meta.rxMsgId].set (meta.pktO↵set);

// Check if all pkts have been received
5 if m receivedBitmap[meta.rxMsgId].all () then

// Reassemble packets into the message
6 Message* msg = this ! ReassembleMsg (meta.rxMsgId);

// Prepend info for delivery to correct thread
7 msg.app hdr.SetValid();
8 msg.app hdr.remote ip = meta.remote ip;
9 msg.app hdr.remote port = meta.remote port;

10 msg.app hdr.local port = meta.local port;
11 msg.app hdr.msg len = meta.msg len;

// Push the reassembled msg to the applications
12 this ! NotifyApplication (msg);
13 this ! ClearStateForMsg (meta.rxMsgId);
14 else
15 m timer ! ScheduleTimerEvent (meta.rxMsgId);

The reassembly module maintains a bitmap for every message, called receivedBitmap, where

each bit corresponds to a packet in the message.1 Each packet arriving at the reassembly module

is stored in the corresponding bu↵er. If the is last pkt flag is set on the accompanying metadata,

the module forwards the entire message to the cores. The is last pkt flag is calculated during the

GetRxMsgInfo extern call, which is described next.

Listing 3.3: Metadata provided to the GetRxMsgInfo extern call

1 struct get_rx_msg_info_req_t {

2 bool mark_received; // Flag for read -only calls

3 IPv4Addr_t src_ip; // Sender ’s IP address

4 PortNo_t src_port; // Sender ’s port number

5 MsgID_t tx_msg_id; // Unique ID set by the sender

6 bit<16> msg_len; // Length of the message

7 bit<8> pkt_offset; // Index of the current packet

8 }

1
Every packet of a message, except the last one, is assumed to be MTU bytes long.

CHAPTER 3. PROGRAMMABLE NICS FOR LOWER TRANSPORT LAYER LATENCY 30

GetRxMsgInfo Extern

The receivedBitmap is maintained to allow for message reassembly and to determine which data

or control packets to send next. The bitmap state is fetched by the ingress pipeline by calling the

extern with the get rx msg info req t metadata. The content of the request metadata for the

GetRxMsgInfo extern is shown in Listing 3.3.

The mark received flag in the input metadata signals whether or not the receivedBitmap

should be updated by the extern call. If true, the value at index pkt offset is set to 1 before

the output metadata is generated.2 The remaining get rx msg info req t metadata is used as the

match fields of the rx msg id table in the reassembly module, a lookup table yielding the unique

locally-assigned rx msg id for the arriving message. If no entry in the table is matched, a new ID

is allocated from the list of free IDs.

The GetRxMsgInfo extern returns get rx msg info resp t metadata, including the rx msg id

for the message and the state corresponding to the message. The content of this response meta-

data is shown in Listing 3.4. The fail flag signals that the reassembly module was unable to

allocate resources for this message, and the programmer decides how the ingress pipeline processes

such messages. is new msg is used to initialize the packet processing logic for a new message.

is new pkt helps prevent processing duplicate packets. is last pkt denotes that all the bits in the

receivedBitmap are set to 1. This value is passed along with the packet to the reassembly module,

to mark message completion.

Listing 3.4: Metadata returned from the GetRxMsgInfo extern call

1 struct get_rx_msg_info_resp_t {

2 bool fail; // Extern return status

3 MsgID_t rx_msg_id; // Unique ID set by the receiver

4 bool is_new_msg; // Msg not seen before

5 bool is_new_pkt; // Packet not received before

6 bool is_last_pkt; // Msg completely received

7 bit<9> ackNo; // Smallest non -received pkt_offset

8 }

2
This is useful when an arriving packet belongs to an incoming message, but it is not a data packet, e.g., trimmed

packets in NDP.

CHAPTER 3. PROGRAMMABLE NICS FOR LOWER TRANSPORT LAYER LATENCY 31

3.2.4 Packetization Module

NanoTransport accepts complete messages from application threads and breaks them into Ethernet

packets for network transmission. In addition to storing the message data, the packetization module

maintains state variables for the message, similar to [8], so that the module can keep track of the

communication between the sender and the receiver. The state variables and their roles are listed

below:

• deliveredBitmap: Tracks which packets are delivered to the destination. The ingress pipeline

can be programmed to trigger DeliveredEvent to update the values of this bitmap. Even-

tually, the packetization module clears the memory allocated to the message when all of its

packets are delivered.

• credit: The largest pkt offset value that is allowed to be transmitted. All the smaller

pkt offset values are allowed to be sent into the network. The protocol logic in the ingress

pipeline uses CreditTxEvent to update this value. The default value for this variable is

configured on compile time, similar to the initial window for TCP. [31] For the message to

start at the line rate, this value should be configured to the Bandwidth Delay Product (BDP)

of the network.

• txBitmap: Tracks packets that are to be (re)/transmitted. To emit a packet, the packetization

module chooses the smallest index from this bitmap whose value is 1. Then, the corresponding

value is reset to 0. CreditTxEvent can be triggered to set a value in this bitmap back to 1 for

retransmission.

• maxTxPktOffset: Tracks the highest pkt offset sent so far. Determines packets to be re-

transmitted upon a timeout.

• timeoutCnt: Tracks the number of timeouts the message has received without updating the

maxTxPktOffset value. If this number is higher than the configured threshold, the packetiza-

tion module gives up on the message and clears all memory allocated to it.

The packetization module also stores the message ID, the sender and receiver’s port numbers, and

the receiver’s IP address. The egress metadata shown in Listing 3.2 is generated from these values

whenever a packet is sent. The packetization module chooses a message from the memory which has

packets that are allowed to be sent. The packet with the smallest allowed index is forwarded to the

arbiter along with the metadata.

CHAPTER 3. PROGRAMMABLE NICS FOR LOWER TRANSPORT LAYER LATENCY 32

Algorithm 2: DeliveredEvent processing logic

Inputs: tx msg id, and ackBitmap
1 deliveredBitmap = bitmap table.lookup(tx msg id);
2 deliveredBitmap = deliveredBitmap or ackBitmap;
3 if deliveredBitmap.all() then
4 ClearStateForMsg (tx msg id);

The events that are used to update the packetization module’s state variables are described next.

DeliveredEvent

Informs the packetization module that the packet has been successfully delivered to the remote

host. The sender sets the corresponding bit in the deliveredBitmap so that the packet is not

retransmitted in the future. Typically, a received acknowledgment packet triggers this event, as

decided by the programmer. Algorithm 2 shows the main processing logic triggered by this event.

ackBitmap is a bitmap created by the ingress pipeline to indicate which packets to mark as delivered.

CreditTxEvent

Signals that a message is allowed to send more packets (new packets or retransmissions) or the credit

(e.g., cwnd) is reduced. txBitmap is modified to identify which packets can be sent next time there

is su�cient credit to transmit one. For example, in Homa, an arriving Grant packet triggers this

event. Algorithm 3 shows the main processing logic triggered by the event. rtxBitmap is the input

argument indicating which packets are to be retransmitted. It is set by the ingress pipeline under the

control of the programmer. For example, NDP sets the bit for NACK packets for trimmed packets.

A protocol may require several packets to be retransmitted at the same time, e.g., selective NACK

similar to SACK [71].

TimeoutEvent

Every message in the packetization module initiates a timer, along with metadata called rtx offset,

in the timer module. The metadata is the highest pkt offset transmitted for the message as of

the time the timer is scheduled. When a timer expires, the timer module triggers the packetization

module’s TimeoutEvent to compute packets for retransmission. All non-delivered packets which

have a smaller o↵set than rtx offset are retransmitted. Finally, a new timer is scheduled for the

same message to account for future retransmissions. Algorithm 4 shows the processing logic triggered

CHAPTER 3. PROGRAMMABLE NICS FOR LOWER TRANSPORT LAYER LATENCY 33

Algorithm 3: CreditTxEvent processing logic

Inputs: tx msg id, rtxF lag, rtxBitmap, creditUpdateF lag, newCredit, allowTxF lag
1 txBitmap = bitmap table.lookup(tx msg id);
2 if rtxFlag then
3 txBitmap = txBitmap or rtxBitmap
4 if creditUpdateFlag then
5 currentCredit = credit table.lookup(tx msg id);
6 currentCredit = newCredit;
// Determine which packets are allowed to be sent

7 txPkts = txBitmap & OnesUntil (currentCredit);
8 if txPkts.any() and allowTxFlag then
9 Emit (txPkts);

10 txBitmap = txBitmap and not txPkts;

Algorithm 4: TimeoutEvent processing logic

Inputs: tx msg id, and rtx offset
1 maxTxPktO↵set, timeoutCnt = state table.lookup(tx msg id);
2 deliveredBitmap, txBitmap = bitmap table.lookup(tx msg id);
3 if timeoutCnt >threshold then
4 ClearStateForMsg (tx msg id);
5 else
6 if maxTxPktO↵set >rtx o↵set then
7 timeoutCnt = 0
8 else
9 timeoutCnt = timeoutCnt + 1

10 rtxPkts = (not deliveredBitmap) and OnesUntil (rtx o↵set);
11 if rtxPkts.any() then
12 Emit (rtxPkts);
13 txBitmap = txBitmap and not rtxPkts;
14 Timer ! ScheduleEvent (tx msg id, maxTxPktO↵set);

by this event. A detailed description of how the timer module works is provided in §3.2.5.

The fixed-function timeout event processing has been su�cient for a wide class of transport

protocols so far. However, it is possible that some protocols will need to handle timeout events

di↵erently. For example, timer events might need to generate control packets, or periodically update

protocol state in the ingress/egress pipelines. Therefore, a future version of the nanoTransport

architecture may benefit from making the timeout event processing programmable as well.

3.2.5 Timer Module

Timers are required for two purposes: (1) identify packets that have not (yet) been acknowledged

and need to be retransmitted, and (2) identify idle messages (have not sent or received packets) for

CHAPTER 3. PROGRAMMABLE NICS FOR LOWER TRANSPORT LAYER LATENCY 34

a long time to clean up the per-message soft state.

Software implementations can maintain a timer per packet. In hardware, it is challenging to

maintain a timer for every in-flight packet – potentially a large number depending on the network’s

BDP and the configured timeout duration. To reduce memory requirements, nanoTransport main-

tains a single timer per message.

When the applications write a new message to the packetization module, the egress timer mod-

ule’s ScheduleEvent is triggered. This event creates a new timer for the corresponding message,

along with associated metadata. When this timer expires, the packetization module’s TimeoutEvent

is triggered. This event may or may not cause a new timer to be scheduled for the same message.

When the message is successfully delivered to the remote client, the packetization module fires a

CancelEvent within the timer module before deleting the state for the message. This event ensures

that no timers are left behind which may timeout spuriously.

Similarly, when the first packet of a message arrives at the reassembly module, ScheduleEvent

of the ingress timer module is triggered. This event creates a new timer for the corresponding

message. Since there is no notion of retransmission in the ingress direction, this timer is only used

to discard the state for the message from the reassembly module. Each arriving packet triggers

ReScheduleEvent for the associated message, which mainly resets the timer and prevents timeouts.

Finally, a completed message signals CancelEvent to invalidate the associated entry in the ingress

timer module.

3.3 Building NanoTransport Hardware

The nanoTransport prototype extends the open source nanoPU design [62] by adding 2500 lines of

Chisel [12] code and 1000 lines of P4 code. Large-scale, cycle-accurate simulations for the prototype

are run on AWS FPGAs [145] using Firesim [81]. The FPGAs run at 90MHz, but the target clock

rate is simulated as 3.2GHz, which mimics IceNIC [81] – the baseline comparison for nanoTransport.

The simulated NICs are connected by C++ switch models running on the AWS x86 host CPUs

with 200Gb/s simulated line rates. Note that the exceptionally high link capacities and the clock

rates are used to stress test the design and show how performant the nanoTransport design is for

future networks.

In addition to the cycle-accurate hardware prototype, a behavioral model of the nanoTransport

architecture is implemented in NS3 [138] for rapid functionality testing. This NS3 module has been

mostly used to verify the protocol implementations.

CHAPTER 3. PROGRAMMABLE NICS FOR LOWER TRANSPORT LAYER LATENCY 35

Overall, the nanoTransport artifact enables the assessment of the end-to-end functionality and

performance of the design. The following sections provide more details about the nanoTransport

prototype.

3.3.1 Programmable Modules

The ingress and egress pipelines are implemented using P4 and Xilinx SDNet3 [153]. The SDNet

compiler generates a Verilog module with the required functionality, which is integrated into the nan-

oTransport prototype. The correct functionality of the design is verified using Synopsys VCS [155]

cycle-accurate simulations. However, due to licensing restrictions, SDNet-generated modules on

AWS FPGAs were not available. As a result, the P4 code was hand-compiled into Chisel so that

the full system could be evaluated with Firesim on AWS FPGAs. The evaluation results described

in §3.4 use the hand-compiled P4 code. Each P4 program is implemented as a custom pipeline,

similar to how SDNet maps P4 programs to FPGAs. An ASIC prototype would instead have a fixed

number of pipeline stages which all programs must be mapped to. This approach is planned to be

explored in future work.

Recall that the Packet Generator in nanoTransport is a programmable module. When processing

a CtrlPktEvent from the ingress Pipeline, the packet generator might generate one or more control

packets while (optionally) pacing their transmission rate. These operations are not particularly

well-suited for a P4 pipeline, which is typically used to transform individual packets. As a result,

the packet generator is also programmed in Chisel for the nanoTransport prototype. Exploration

of more convenient, higher-level abstractions for programmable packet generation remains as an

opportunity for future work. One possibility is to use P4 along with new custom externs to fork

(duplicate) and pace packets within the pipeline.

3.3.2 Reassembly and Packetization Modules

The reassembly module reassembles packets, which might arrive out-of-order, into contiguous mes-

sages for delivery to applications. The packetization module splits messages into segments, which

might get retransmitted out-of-order due to packet loss in the network. In order for these tasks to

be performed at line rate, simple data structures must be used, which require only constant time

operations. One could choose from several di↵erent approaches; this section describes the bu↵er

design in the final prototype.

3
Xilinx SDNet is also known as Vitis Networking P4.

CHAPTER 3. PROGRAMMABLE NICS FOR LOWER TRANSPORT LAYER LATENCY 36

The message bu↵er is divided into bu↵ers of several di↵erent fixed sizes, and a free list for each

size class keeps track of which bu↵ers are available. When a bu↵er is to be allocated, the smallest

available one that is large enough to store the whole message is selected. For message reassembly, a

bu↵er is allocated when the first packet of the message arrives from the network and is freed when

the message is forwarded to the processing cores.4 For message packetization, a bu↵er is allocated

when the application writes the first word of the message and is freed when the entire message has

been successfully delivered to the receiver. The design uses a table indexed by a message identifier

to keep track of where each message is stored (the bu↵er pointer).

One of the benefits of using fixed-size bu↵ers to store messages is that it simplifies out-of-order

reassembly and retransmission: to find the position of a particular packet within the message, the

hardware simply adds the appropriate o↵set to the message’s bu↵er pointer. In addition, the logic

that is required to manage memory bu↵ers is very simple and can run at the line rate. Bu↵er

allocation requires one dequeue from a free list, and freeing a bu↵er requires one enqueue to a free

list; there is no need for complex partitioning and merging of variable-size bu↵ers.

The primary drawback of using fixed-size bu↵ers is that it leads to memory fragmentation and

potentially poor utilization of the bu↵er space. It is therefore important to properly configure these

message bu↵er modules. Configuration involves selecting how to carve the total bu↵er space into

fixed-size bu↵ers. If the message size distribution is known at configuration time, then it is often

possible to achieve very high utilization of the bu↵er. For example, if a workload consists of 50%

messages that are 100B and 50% messages that are 500B then the best option is to use two size

classes, each with an equal number of bu↵ers.

3.3.3 Timer Modules

The timer modules in the nanoTransport architecture maintain a single timer, along with associated

metadata, for each message in the reassembly/packetization modules. The goal is to minimize

memory and logic requirements while ensuring that timers can be scheduled or canceled in constant

time. Furthermore, since timers are used to trigger packet retransmissions or for garbage collection

in the background, there is neither need for the timers to expire exactly on time, nor for them to

expire in the correct order. The main requirement is that they expire within a bounded amount of

time.

These requirements lead to a very simple hardware design. The timers for each message are

4
An arriving packet is dropped at the ingress of the reassembly module if it is unable to allocate a bu↵er for the

message.

CHAPTER 3. PROGRAMMABLE NICS FOR LOWER TRANSPORT LAYER LATENCY 37

Algorithm 5: NDP P4 Pseudocode

1 Control Ingress(out ingress metadata):
2 state credit;
3 if hdr.ndp.flags.DATA then
4 msg info = GetRxMsgInfo();
5 if hdr.ndp.flags.TRIM then
6 genNACK = true;
7 pull o↵set di↵ = 0;
8 Drop();
9 else

10 genACK = true;
11 pull o↵set di↵ = 1
12 if not msg info.fail and msg info.is new pkt then

// ifElseRAW extern
13 if msg info.is new msg then
14 credit[msg info.id] = ... // initialize
15 else
16 credit[msg info.id] += pull o↵set di↵;
17 pull o↵set = credit[msg info.id];
18 CtrlPktEvent(genACK, genNACK, pull o↵set);
19 else
20 if hdr.ndp.flags.ACK then
21 DeliveredEvent()
22 if hdr.ndp.flags.NACK or hdr.ndp.flags.PULL then
23 CreditTxEvent()
24 Drop();
25 Control Egress(in egress metadata):
26 hdr.ethernet.SetValid();
27 hdr.ip.SetValid();
28 hdr.ndp.SetValid();
29 FillHeadersFromMetaData(egress metadata);

stored in a single memory indexed by message ID. The entry contains the following fields: a single

valid bit indicating whether or not the entry is valid, a 64-bit timeout value indicating the time at

which the timer expires, and associated timer metadata. A background thread sequentially scans

the entries and checks if the timer has expired. If so, it will extract the metadata and trigger a

timeout event. Scheduling and canceling a timer simply involves writing a single entry to memory.

In some cases, a timer may expire immediately after the background thread checks it, in which

case the timeout event will not be triggered until the background thread loops back around to it.

However, note that even in this case the timer will expire within a bounded amount of time, which

is determined by the maximum number of timers/messages in the system. This simple design meets

the requirements for a low-latency transport layer implementation in hardware.

CHAPTER 3. PROGRAMMABLE NICS FOR LOWER TRANSPORT LAYER LATENCY 38

3.3.4 Protocol Implementations

The evaluation of nanoTransporthas been conducted with two di↵erent protocol implementations.

These protocols are chosen to represent a relatively wide range of features required by other proto-

cols [5, 6, 13, 29, 49, 57].

NDP [54] is the first protocol programmed on the nanoTransport prototype. It is receiver-

driven and aims to reduce the tail latency of network messages by ensuring that all dropped packets

are retransmitted quickly. When congested, NDP-enabled switches trim data packets that would

otherwise be dropped, forwarding only the packet headers to the receiver, at high priority. The

receiver then quickly sends negative acknowledgments (NACKs) to inform the sender of the packet

loss. This mechanism allows NDP to avoid relying on long timeouts. NDP senders initially send

only up to one bandwidth-delay-product (BDP) worth of packets. The receiver, then, explicitly

pulls the remaining ones while pacing them to ensure that the arrival rate of the pulled packets does

not exceed the capacity of the bottleneck link. New data packets are pulled round-robin among

messages with the assumption that if a data packet leaves the network, a new one can be inserted

without overwhelming it.

Algorithm 5 provides pseudocode for the NDP implementation in P4. The protocol uses a stateful

operation to read the previous credit for the message and increment it if needed. This operation is

represented with the IfElseRaw extern, described in §3.2.2.

Homa [119] is the second protocol programmed on the nanoTransport prototype. It is also a

receiver-driven protocol, but unlike NDP, it is designed with the assumption that packet loss is

extremely rare in modern networks. Thus, it simply relies on timeouts to detect dropped packets

rather than utilizing packet trimming within the network. However, it does require switches to

support at least a few strict priority queues.

Additionally, rather than using a round-robin “pull” mechanism, Homa aims to minimize message

completion time by approximating SRPT [143] scheduling at the receiver. The associated SRPT

message granting logic is implemented via the priority scheduler extern described in §3.2.2. The

scheduler maintains metadata about all active messages, and the rank (i.e., priority) is assigned as

the remaining size of the message (a lower value is higher priority). The scheduler returns the highest

priority “grantable” message, where a grantable message is the one that has fewer than one BDP of

data outstanding. Messages are removed from the scheduler after they have been fully granted.

The implementation of the priority scheduler takes advantage of the fact that most messages are

small (less than 1 BDP) and hence do not need to be scheduled; only a few messages need to be

CHAPTER 3. PROGRAMMABLE NICS FOR LOWER TRANSPORT LAYER LATENCY 39

Algorithm 6: Homa P4 Pseudocode

1 state msgPrio;
2 Control Ingress(out ingress metadata):
3 state msgState;
4 priorityScheduler grantScheduler;
5 if hdr.homa.flags.DATA then
6 msg info = GetRxMsgInfo();
7 if not msg info.fail and msg info.is new pkt then

// ifElseRAW extern
8 if msg info.is new msg then
9 msgState[msg info.id] = ... // initialize

10 else
11 msgState[msg info.id].remaining size -= 1;
12 sched msg = grantScheduler.apply(...);
13 if sched msg then

// RAW extern
14 msgState[sched msg.id].grantedIdx = sched msg.grant o↵set;
15 CtrlPktEvent(msgState[sched msg.id]);
16 else
17 DeliveredEvent();
18 if hdr.homa.flags.GRANT then
19 msgPrio[hdr.homa.tx msg id] = hdr.homa.prio;
20 CreditTxEvent();
21 Drop();
22 Control Egress(in egress metadata):
23 hdr.ethernet.SetValid();
24 hdr.ip.SetValid();

// RW extern
25 hdr.ip.tos = msgPrio[egress metadata.tx msg id];
26 hdr.homa.SetValid();
27 FillHeadersFromMetaData(egress metadata);

scheduled at any given time. Therefore, the scheduler extern maintains the message state in registers

so that it can compare them all simultaneously. The prototype scheduler extern supports up to 16

scheduled messages for simultaneous comparison whereas the remaining scheduled messages, if any,

are stored in a FIFO queue until a register space opens.

In addition to the scheduler, Homa uses two dual-ported memory primitives (§3.2.2) as shown in

Algorithm 6. One of those dual-ported memories is used to maintain information about messages –

it is accessed/updated by data packets as they arrive and then updated further down the pipeline

after deciding which message to grant. The other dual-ported memory is used to track the priority

of messages being transmitted. Incoming GRANT packets update the memory and outgoing data

packets read it. Hence, this state is shared between the ingress and egress pipelines.

CHAPTER 3. PROGRAMMABLE NICS FOR LOWER TRANSPORT LAYER LATENCY 40

To evaluate the programmability of the prototype, a new low-latency, reliable message transport

protocol called Homa-Tr was created. Homa-Tr combines features from NDP and Homa, in the

manner a programmer might pick and choose features from di↵erent protocols. It includes NDP’s

ability to quickly recover from packet loss by trimming packets in the switches and sending negative

acknowledgments (NACKs). In the meantime, it adopts Homa’s ability to reduce message completion

time by GRANT’ing messages in SRPT order. Overall, it proved relatively quick and easy to

implement Homa-Tr, incorporating NDP’s packet trimming and NACK mechanism into Homa code.

Evaluation details are provided in §3.4.2.

P4 source code for the protocols is available in nanoTransport’s open source artifact [61]. The

NDP and Homa implementations required 376 and 520 lines of P4 code, respectively, which is an

order of magnitude less code than available software-based implementations.

3.4 Evaluating NanoTransport

The nanoTransport architecture is evaluated on the performance, correctness, and feasibility of

the transport protocol implementations. Microbenchmarks and end-to-end experiments with cycle-

accurate simulations on AWS FPGAs [145] with Firesim [81] are utilized to evaluate performance

and correctness. The FPGAs run at 90MHz, but a target CPU and NIC clock rate of 3.2GHz is

simulated. All of the results reported in this section are based on the target 3.2GHz clock rate.

To evaluate the feasibility of deploying the nanoTransport design in hardware, the FPGA resource

utilization is compared to a more traditional, open-source NIC, called IceNIC [81], which does not

implement the transport layer in hardware. More discussion about how the nanoTransport design

perform on an ASIC is provided in §3.5.1.

The design, implementation, and testing cycle for hardware prototyping is slow and expensive

(even on FPGAs). Yet, transport protocol designers generally need to conduct large-scale experi-

ments to verify a protocol’s functionality and usefulness. To ease the development process, a C++

based behavioral model for the nanoTransport architecture was developed in NS3 [138]. A protocol

is first tested at scale using NS3, before programming the hardware. Since the performance results

are the same for the NS3 model and the hardware prototype, the NS3 results are omitted here. The

source code for the NS3 behavioral model is provided as a part of the open-source artifact along

with the hardware prototype [61].

CHAPTER 3. PROGRAMMABLE NICS FOR LOWER TRANSPORT LAYER LATENCY 41

Table 3.1: RX and TX latency (from first byte in until first byte out) on the nanoTransport architecture
for the NDP and Homa implementations when processing a single 16-Byte message (80-Byte packet).

RX Latency (ns) TX Latency (ns) Grand
Ingress Reassembly Total Packetize Egress Total Total (ns)

NDP 5 0.94 5.94 2.81 0.31 3.12 9.06
Homa 6.25 0.94 7.19 2.81 0.94 3.75 10.94

3.4.1 Latency and Throughput Microbenchmarks

NanoTransport is targeted to process packets at 200Gb/s. For 1088-Byte packets, 200Gb/s means

that a new packet can be transmitted or received every 44ns. The incast experiment described in

§3.4.2 verifies that this is the case.

In addition, the maximum throughput for the worst-case tra�c pattern is evaluated with nan-

oTransport. To measure the RX throughput, small 65-Byte packets are sent to a nanoTransport

receiver at 200Gb/s (380Mrps). Each packet is a separate message and carries 1 Byte of payload

as well as 64 Bytes of packet header. The measurements at the application layer verify that the

minimum-sized incoming messages are forwarded to the cores at line rate. On the TX side, the

same workload is generated on cores. The measurements from the network verify that the outgoing

messages are transmitted at line rate onto the wire. Overall, the prototype is verified to support the

target throughput of 200Gb/s in the worst case for both NDP and Homa implementations.

Table 3.1 shows the RX and TX latency breakdown for our NDP and Homa implementations.

Homa’s ingress and egress pipelines utilize five and two stages respectively and have a slightly higher

latency due to its central message scheduling decisions, whereas NDP utilizes only three and one

stage. The number of stages is determined by sequential dependencies between extern calls/memory

accesses. Nevertheless, the transport processing requires at most 7.2ns in the ingress path, and 3.8ns

in the egress path, resulting in a maximum transport layer round-trip time of 11ns.

NanoTransport’s latency is three orders of magnitude lower than the 4.8µs reported for the

Homa Linux Kernel Module [128]. The latency through the Linux network stack is very sensitive

to interrupt processing overheads and OS thread scheduling decisions. Ousterhout [128] reports tail

round-trip latency of 15.1µs, 23.4µs, and 24.1µs for Homa, TCP and DCTCP respectively.

eRPC [79] is a state-of-the-art, low-latency software network stack and reports a wire-to-wire

latency of 850ns. It is di�cult to compare nanoTransport directly to eRPC’s transport layer. How-

ever, the paper does report measurements that suggest that the congestion control logic adds an

average of 17.8ns of per-packet software latency, which is comparable to nanoTransport’s latency.

CHAPTER 3. PROGRAMMABLE NICS FOR LOWER TRANSPORT LAYER LATENCY 42

��� ��� ��� ��� ���� ����
7LPH��XV�

�

��

��

��

��

4
XH
XH
�2
FF
XS
DQ
F\
��.
%�

%XIIHU�6L]H� ����.%
1'3
+20$
+20$�75

� � �� ��
7LPH��XV�

%XIIHU�6L]H� ���.%

(a) Bottleneck queue occupancy

�� �� �� �� �� �� �� �� �� ��
0VJ�6L]H��3NWV�

���

���

���

���

����

����

6O
RZ
�'
RZ
QV

%XIIHU�6L]H� ����.%
1'3
+20$
+20$�75

�� �� �� �� �� �� �� �� �� ��
0VJ�6L]H��3NWV�

%XIIHU�6L]H� ���.%

(b) Message completion slowdowns.

Figure 3.2: Ten incast messages to the same receiver with di↵erent transport protocols and bottleneck
bu↵er sizes while sender and receiver NICs are all running the nanoTransport prototype.

That being said, this measurement is reported under the best-case conditions in which the network

is not congested and thus most of the congestion control logic is bypassed for almost all packets.

On the other hand, the nanoTransport latency values reported in Table 3.1 are deterministic. Fur-

thermore, the eRPC measurement does not include other aspects of the transport protocol such as

message packetization/reassembly or retransmission logic. Finally, as a result of running in software,

a single eRPC core can only process up to about 10Mrps, which is about 38⇥ lower throughput than

the pipelined nanoTransport design.

3.4.2 End-to-end Evaluation

To evaluate the end-to-end performance, the functionality of the architecture, and protocol imple-

mentations (i.e., NDP, Homa, and Homa-Tr), incast experiments were run using Firesim. In these

experiments, ten senders each transmit one message to the same receiver at the same time. Each

message has a distinct size, ranging from 20 to 38 MTU-sized (1088B) packets. This experiment is

CHAPTER 3. PROGRAMMABLE NICS FOR LOWER TRANSPORT LAYER LATENCY 43

run on a simple dumbbell topology where the bottleneck link is the receiver’s downlink. The RTT

between the sender and the receiver is 525ns, and all the links run at 200Gb/s. Two experiments

are conducted in this setup; one in which the bottleneck bu↵er size is large enough to absorb the

incast, and one in which the bottleneck bu↵er size is too small to absorb the incast, resulting in

packet loss and/or trimming.

The correctness of the protocol programs is verified by examining the packet traces of the incast

experiment. Figure 3.2a shows the bottleneck queue occupancy in each experiment. As expected,

the NDP client PULLs a data packet every time it receives one, so that the total number of packets

in flight, and hence the queue occupancy, stays high until some messages are complete. On the other

hand, the Homa client sends GRANTs for only a few messages,5 which allows the queue occupancy

to stabilize at a low level after the first RTT of the incast.

Figure 3.2b shows the message completion time slowdown for each message in each of the two

experiments. The slowdown is defined as the ratio of the actual message completion time to the

ideal completion time without any congestion in the network (smaller is better).

When the bu↵er is large, packets are not lost, enabling both NDP and Homa to smoothly

PULL/GRANT new packets from the senders. However, Homa achieves lower slowdowns because

messages are GRANT’ed in SRPT order – a policy designed to minimize message completion time.

Since larger messages wait until the smaller ones are complete, the slowdown for Homa increases

with the message size. On the other hand, NDP pulls messages in a round-robin fashion, causing

similarly high slowdowns across all messages.

When the bu↵er size is too small to absorb the incast, the relative performance of the protocols

completely changes. In this case, NDP can achieve lower slowdowns because it enables senders to

quickly retransmit lost data using packet trimming and NACKs. Homa, on the other hand, relies on

timeouts to detect packet loss. Therefore, NDP still achieves similar slowdowns for all the messages,

whereas it takes longer for Homa to complete the messages.

The nanoTransport prototype is also programmed to implement a new protocol called Homa-Tr

(§3.3.4), which combines features of Homa and NDP. Homa-Tr incorporates NDP’s packet trimming

and NACK’ing mechanism into Homa so that messages are granted in SRPT order while enabling

quick recovery from packet loss. Figure 3.2b shows that Homa-Tr performs exactly the same as

Homa when the bu↵er size is su�ciently large. However, when the bu↵er size is reduced by half

(54KB), Homa-Tr is able to quickly recover from losses, and achieve ⇠2⇥ better slowdown compared

5
Homa sends GRANTs to multiple messages, called overcommitment, to account for cases where some senders are

busy with sending other messages.

CHAPTER 3. PROGRAMMABLE NICS FOR LOWER TRANSPORT LAYER LATENCY 44

Figure 3.3: FPGA resource utilization of nanoTransport when running NDP and Homa (39KB max
message size and 16 concurrent messages) compared to traditional IceNIC, which does not implement any
transport processing.

Table 3.2: The resource utilization of the nanoTransport NDP prototype when configured to support both
16 and 128 concurrent 32KB messages. The percentage in each entry indicates the % utilization of the
corresponding resource available on the Virtex Ultrascale+ FPGA.

Msgs Logic LUTs Flip Flops Total Mem (MB)
16 6999 (0.59%) 5043 (0.21%) 1.2 (11.9%)
128 23578 (1.99%) 8941 (0.38%) 8.4 (85.7%)

to Homa and ⇠1.5⇥ better slowdown compared to NDP.

Experimental results suggest that the nanoTransport architecture can be programmed to run

di↵erent low-latency protocols and that the protocol implementations behave as expected.

3.4.3 Feasibility

Next, the cost of implementing a programmable transport layer in hardware is evaluated. Figure 3.3

shows the FPGA resource utilization for the NDP and Homa implementations. To gauge the cost of

putting the transport layer in hardware, we compare the resources used by nanoTransport against

a baseline, called IceNIC [81], which does not implement any transport processing.

A basic NIC, like IceNIC, is very simple: It contains Ethernet header parsing, some staging

memory, and the DMA logic to transfer packets to and from host memory. Relative to IceNIC,

nanoTransport adds all the transport logic described above, and Figure 3.3 shows that the logic and

flip-flop utilization grows by about 30% for NDP and 60% for Homa. This is as much a reflection

of the simplicity of the simple IceNIC as the additional complexity of nanoTransport. Table 3.2

shows that nanoTransport consumes less than 2% of the logic and flip-flops of a Virtex Ultrascale+

FPGA [167]. It would require a much smaller fraction of an ASIC.

NanoTransport also requires memory for packetization and reassembly as opposed to IceNIC. The

CHAPTER 3. PROGRAMMABLE NICS FOR LOWER TRANSPORT LAYER LATENCY 45

amount of memory depends on the number of concurrent messages. When designed to support up

to 16 concurrent 39kB messages, nanoTransport needs about 1.2MB of on-chip SRAM6 (Table 3.2).

If instead 128 concurrent 39kB messages are supported, it consumes 8.4MB, which occupies less

than 2mm2 on a modern 7nm ASIC. The memory requirement increases linearly with the number

of concurrent messages supported.

In conclusion, nanoTransport can easily be added to a modern NIC. Modern NIC ASICs already

include tens of MB of onboard SRAM [166]; adding the logic and memory for a programmable,

low-latency, reliable messaging transport layer appears to be a relatively small additional cost.

3.5 Discussion

3.5.1 FPGA versus ASIC

The nanoTransport prototype was built to run on an FPGA as a proof-of-concept and evaluation

platform. Yet, its design is not necessarily the right choice for an FPGA-based NIC, where the

FPGA itself can be re-optimized for a new transport protocol using Verilog.

In contrast, ASICs mostly run faster, consume less power, and cost less in volume than FPGAs [34].

For example, the Tonic [8] prototype uses a clock frequency of 100MHz whereas nanoTransport is

targeted to run at 3.2GHz. This frequency is a design choice that follows the NanoPU, and IceNIC

artifacts used to develop the nanoTransport design. NanoPU introduces a direct interface between

the NIC and the CPU register arrays. The width of the data path for this interface is 64 bits to fit

into the RISC-V register arrays. Hence, 200Gb/s at this interface can only be achieved with 3.2GHz

clock frequency, which is not far from being realistic for a typical CPU architecture.

On the other hand, commercial PISA pipelines typically run with 1 to 1.5GHz clock frequencies

to meet the timing requirements of stateless and stateful packet processing atoms when synthesized

into actual ASICs [150]. For example, Tofino [35] runs at 1GHz with a 7nm ASIC library to

achieve 12.8Tb/s for 32⇥400Gb/s ports. To achieve its exceptional speed – despite a clock frequency

lower than 3.2GHz used for nanoTransport – it uses a much wider data path than 64 bits used for

nanoTransport. By widening the data path, nanoTransport can also a↵ord to run at lower clock

frequencies that are more feasible for today’s manufacturing technologies and still maintain 200Gb/s.

Synthesizing the nanoTransport design and developing an actual ASIC implementation, possibly

with a RISC-V CPU core, remains an attractive future work. The processes used to synthesize

6
Including message payload and the associated state, as described in §3.2.4.

CHAPTER 3. PROGRAMMABLE NICS FOR LOWER TRANSPORT LAYER LATENCY 46

commercial PISA pipeline solutions, e.g., Tofino, give confidence that nanoTransport can also be

taped out on high-performance chips. Even if the clock frequency is halved to succeed at this

task, nanoTransport would still be able to process packets almost an order of magnitude faster

than the state-of-the-art programmable architectures. After all, the clock frequency determines the

computation time for each cycle in the system while the number of cycles required to process a

packet stays constant with the given logic of protocols.

For example, Tonic uses only 10 cycles to process a single packet in the egress direction, but it

adds up to 100ns in total. In contrast, nanoTransport requires 23 cycles at most for the evaluated

protocols in one direction. However, the targeted – 32⇥ faster – clock rate enables 93% lower

end-to-end latency, i.e., 7ns, which implies only 14ns when the clock frequency is halved.

Note that NanoTransport’s higher number of cycles to process a packet is the cost of easier

programmability, i.e., relatively higher-level P4 language instead of Verilog. Nevertheless, this cost

is easily paid o↵ with the capability to run P4 pipelines in ASICs, which run more cycles per unit of

time. NanoTransport’s contribution here is that it replaces the programmable modules with PISA

pipelines, which can run at higher frequencies while still being programmable.

One downside of using PISA pipelines on ASICs is the limited number of compute operations. For

example, P4 does not allow floating point operations whereas it is possible – but very expensive in

latency and resources – to implement such operations in Verilog. These operations can theoretically

enable the developer to implement a much wider range of algorithms. Even then, Tonic does not

allow for such complex arithmetic to make sure every module completes in 1 cycle only.

Fortunately, both Tonic and nanoTransport show that a significant fraction of transport proto-

cols and algorithms can be implemented without floating point arithmetic. For the cases where such

arithmetic is required, §3.5.2 lists alternative strategies to enable or approximate the correspond-

ing computations. Hence, nanoTransport avoids this unnecessary flexibility to obtain faster clock

frequencies with ASICs in return.

In conclusion, while tested on FPGA, nanoTransport is designed to be implemented in a custom

NIC ASIC for faster packet processing with a lower energy footprint and enough programmability.

3.5.2 Programming New Protocols

So far, nanoTransport is programmed and evaluated when running low-latency receiver-driven pro-

tocols, NDP, Homa, and Homa-Tr. For comparison, it was also evaluated for what it would take to

program nanoTransport to run HPCC [102], which is sender-driven (rather than receiver-driven).

CHAPTER 3. PROGRAMMABLE NICS FOR LOWER TRANSPORT LAYER LATENCY 47

An HPCC sender examines the stack of INT reports [88] in every packet, determines the bottleneck

link, and calculates the new window size. The PISA pipelines in nanoTransport can be used to

process INT reports given switches are capable of generating them. If needed, P4 programmable

switches can leverage the optimizations proposed in PINT [17] to reduce the amount of processing,

thus pipeline stages, in the NIC.7 The sender nanoTransport client can then use simple lookup tables

in the P4 pipeline to calculate the congestion window size.

Implementing DCQCN [175] and Swift [91] were also considered for nanoTransport. Both of

these algorithms involve floating point computation at the NIC to calculate transmission rates and

congestion windows. Although the nanoTransport prototype does not support floating point oper-

ations, there are three alternative design choices to enable them: (1) Add floating point to the P4

pipeline in hardware; assuming we need only about 200 million floating point operations per second,

this is relatively straightforward in a modern ASIC, (2) Use higher precision fixed point arithmetic,

which is already supported in switch ASICs [35], or (3) Use lookup tables in the P4 pipeline. I

anticipate that future ASIC implementations will utilize all three techniques.

3.5.3 Multiple Concurrent Protocols

The CPU might host multiple applications, each requiring high-performance transport protocols.

Hence, the NIC may need to support several protocols at the same time. For example, it might o↵er

a tail latency-optimized protocol for RPCs, while running a throughput-optimized protocol for the

same application’s bulk transfer tra�c.

NanoTransport can do this, provided it has su�cient resources. Essentially, the programmable

parser branches depending on the transport protocol identifier in the packet header, and the corre-

sponding control logic is applied.

Care would need to be taken by the protocol designer to avoid undesirable interactions between

the di↵erent transport protocols in the network. This is not specific to nanoTransport. It is a

problem that all cloud service providers need to solve, whether the transport layer is in hardware or

software. For example, Homa and NDP both assume that its receiver is the only entity allocating

bottleneck bandwidth to the incoming messages. The PULL/GRANT mechanism of Homa and

NDP may over/under-utilize the bottleneck link if the link is shared with non-GRANTed/PULLed

tra�c.
7
The switches compute the link utilization along the path instead of the end host.

CHAPTER 3. PROGRAMMABLE NICS FOR LOWER TRANSPORT LAYER LATENCY 48

3.5.4 Encryption and Compression

Network operators may choose to use encrypted tra�c in their network for security reasons. Modern

NICs commonly include dedicated hardware modules for end-to-end encryption, and to compress

data to and from storage [112, 125, 132]. Although such modules are not included in the prototype,

an ASIC implementation of nanoTransport could easily include them in its processing pipeline.

3.5.5 Serializing RPC Data

Low-latency reliable message protocols frequently carry RPC requests, which need to be serialized

and deserialized at each end. It was recently observed that this process can add quite a lot of latency

to RPC requests [163]. Zerializer shows how marshaling and unmarshaling can be done in hardware.

While beyond the scope of this work, I anticipate ASIC implementations of nanoTransport to add

such capabilities to the hardware P4 pipeline.

3.5.6 Scalability

A key design choice when designing a nanoTransport ASIC will be the size of the SRAM. Once

picked at design time, all programmed protocols will need to live within the constraint. This means

the ASIC designer needs to decide, upfront, how many messages can be supported, and the size of

the largest message. The nanoTransport prototype supported up to 128 concurrent 32kB messages,

which is reasonable for Homa and NDP. However, a more careful study of other transport protocols

is needed before committing the size to an ASIC.

Careful consideration is also required when choosing the number of P4 pipeline stages, which in

turn determines how many serially-dependent operations can be performed on each packet header.

The prototype NDP and Homa programs require significantly fewer stages than the 10–20 stages

supported in some commercial P4 pipelines today [35]. However, more protocols should be evaluated

before committing to an ASIC design.

3.5.7 Other Use-Cases

In addition to RPCs, small messages are frequently sent for RDMA operations as well. Typically, an

RDMA-enabled NIC terminates transport logic with a fixed protocol, i.e., RoCE or Infiniband, and

directly accesses host memory without bothering the host CPU. NanoTransport can do the same by

sending reassembled messages directly to the DMA engine. I anticipate that this approach would

CHAPTER 3. PROGRAMMABLE NICS FOR LOWER TRANSPORT LAYER LATENCY 49

be commonly supported on ASIC implementations of nanoTransport.

Moreover, an ASIC design would likely be configurable to bypass the packetization and reassem-

bly module, for transport layers that the application developer prefers to process in software. This

would be especially useful for applications that implement complex transport features that are not

available on hardware.

The available PISA pipelines also enable running data plane programs that are not transport

layer related, such as NetCache [76], SwitchML [141], and PPS [74] as long as enough TCAM,

SRAM, and pipeline stages are available. The exploration of other services that can be o✏oaded

onto nanoTransport is left as future work.

Chapter 4

Sub-RTT Congestion Control for

Lower Network Latency

Network operators are inclined towards increasing line rates and MTU sizes as much as possible

to satisfy the performance requirements of modern applications such as NVMe and distributed

ML [156, 110]. However, with larger Bandwidth Delay Products (BDPs), an increasing number

of transfers fit within a few BDPs, which entails transfer times that are predominantly a function

of queuing and propagation delays. While propagation delays are static, congestion control (CC)

manages queuing in the network.

Additionally, the transfer of data that fits within a few packets brings more challenges to CC

because it leaves little time for CC to make the correct decisions before the flow completes. The

only time CC can kick in is when a congestion signal arrives after each transmitted packet. However,

An RPC fitting inside fewer packets means that CC kicks in less frequently. Therefore, CC is under

more pressure than ever before to achieve minimal queuing and high link utilization, leaving no room

for imperfect control decisions.

Figure 4.1 illustrates how the rising BDPs make the data center workloads burstier, necessitating

CC to make decisions with higher quality and timeliness. The data for this figure was collected in

a recent analysis of RPC sizes in Google data centers for BDP sizes at 100Gb/s and 400Gb/s

(calculated using a typical base delay/RTT in data centers).

According to the distribution presented in Figure 4.1, the fraction of RPCs that fit within 1 and 4

BDP increases from 62% and 80% at 100Gb/s to 80% and 89% at 400Gb/s. Due to the heavy-tailed

50

CHAPTER 4. SUB-RTT CONGESTION CONTROL FOR LOWER NETWORK LATENCY 51

��� ��� ��� ��� ��� ��� ��� ���
53&�6L]H��%\WHV�

���

���

���

���

���

���

)U
DF
WLR
Q�
RI
�5
3&
V

53&�5HDG
%'3�����*�
%'3�����*�

Figure 4.1: RPC size distribution for READ operations in Google’s data centers as of 2022

nature of the distribution, this 18% increase is equivalent to 3⇥ more RPC bytes that fit within a

single BDP at 400Gb/s. These RPCs are performance-sensitive to queuing and under-utilization,

and even a single incorrect or slow CC decision may end up creating tens of microseconds of tail

queuing [38], or cause under-utilization [151] in this regime. These events can prolong the flow

completion time by a few RTTs. Therefore, an increasing fraction of such short and bursty RPCs

raises the bar for the quality and timeliness of CC in minimizing network latencies.

In addition, Figure 4.1 reveals that a 400Gb/s link with just 40% load sees an RPC arrival or

completion roughly every RTT! Unfortunately, this is too frequent for CC when the control feedback

is inherently delayed by an RTT for each transmitted packet. In other words, when an RPC fits

within one BDP, there is no time for CC to correct for congestion before the RPC completes. A

sender can only send the entire small message at once and hope the network is capable of delivering

it with zero queuing for an ideal flow completion time (FCT). In the meantime, throughput is the

main contributor to FCT for long flows, so the senders must also attempt to utilize the links fully,

casually creating queuing.

The work presented in this chapter identifies two key aspects of CC that are imperative to address

the challenges of achieving higher CC quality and timeliness on burstier workloads:

First, the collection of granular feedback about the location and severity of congestion helps

mitigate over/under-reaction by the end-hosts. A precise CC algorithm should receive the exact state

of the bottleneck to correctly ramp down during congestion and ramp up during under-utilization.

CHAPTER 4. SUB-RTT CONGESTION CONTROL FOR LOWER NETWORK LATENCY 52

This congestion signal should involve switch telemetry, such as the current queue occupancy and link

utilization because it is the only accurate measure of congestion. This way, end-hosts can calculate

the exact number of packets they can inject into the network without creating congestion. §4.1

argues more about the e↵ectiveness and the feasibility of this accurate signal.

Second, the control loop delay is a significant determinant of how sensitive a control algorithm

can be. This delay is the time between a congestion event and the reaction from the senders arriving

at the bottleneck. The smaller the control loop delay, the more accurate and simpler decisions a

control system can make [116]. The state-of-the-art congestion control algorithms in production

are reported to work well to the extent their control loop delay allows [91, 102, 175]. However,

even a delay of one RTT will be too long for future networks to tolerate because of the increasing

BDPs [170]. Moreover, the ever-growing dynamism of workloads makes it ine�cient to take multiple

RTTs when converging to the fair share, making it necessary to explore mechanisms that reduce the

control loop delay to sub-RTT levels. §4.2 demonstrates how sub-RTT feedback mechanisms can be

designed as well as their promises.

Fortunately, the flexibility and precision provided by programmable switches [35, 67, 18] allow

the design of new mechanisms that can reduce the control loop delay and increase the granularity

of control algorithms. These state-of-the-art switches can generate custom control signals to report

fine-grained telemetry so that flows don’t need to rely on end-to-end measurements for detecting

congestion at the bottleneck link.

In this chapter, I present Bolt, an extremely precise CC design with minimal tail latency at very

high line rates. It is based on two main mechanisms: First, it harnesses the power of programmable

data planes to collect the most precise congestion feedback ever with absolute minimum (sub-RTT)

delay. Second, it ramps up flows proactively to occupy available bandwidth promptly. It is therefore

both as accurate and responsive as possible. To achieve its accuracy and responsiveness, it applies

the “packet conservation” principle [70] to the tra�c with accurate per-packet decisions in P4 [23].

The small per-packet cwnd changes, combined with Bolt’s fine-grained in-network telemetry, limit

the e↵ects of noise in the instantaneous congestion signal. Moreover, with Bolt, end-hosts do not

make implicit estimations about the severity and exact location of the congestion or the number of

competing flows, freeing them from manually tuned hard-coded parameters and inaccurate reactions.

The main contributions of this work are as follows:

1. A discussion of the fundamental limits for an optimal CC algorithm with minimal control loop

delay.

CHAPTER 4. SUB-RTT CONGESTION CONTROL FOR LOWER NETWORK LATENCY 53

2. Description of 3 mechanisms that collectively form the design of Bolt – an extremely precise

congestion control algorithm with the shortest control loop possible.

3. Implementation and evaluation of Bolt on P4 switches which achieves 86% and 81% lower

RTTs compared to Swift [91] for median and tail respectively.

4. NS3 [138] implementation for large scale scenarios where Bolt achieves up to 3⇥ better 99th-p

flow completion times compared to Swift and HPCC [102].

The remainder of this chapter describes the rationale behind the design of Bolt in §4.1 and §4.2. It

then provides the design details of Bolt in §4.3 and implementation insights in §4.4. Finally, further

evaluations and benchmarks are provided in §4.5, followed by a discussion of practical considerations

in §4.6.

4.1 Finding Precise Congestion Signals

4.1.1 Handicap of Surrogate Signals

Loss, ECN, and RTT are widely used signals, and this popularity mainly stems from the fact that

they are easily obtained from the network. Given the number of well-defined standards [46, 47, 21],

congestion control has evolved around these signals for the last four decades. But all three signals

are by-products of the congestion and are not an exact measure of the congestion itself. Next, I

consider the quality of each signal in turn.

Loss, of course, is the most common congestion signal and indicates that at least one bu↵er

is full along the forward or reverse path,1 which means the news of congestion arrives late after

the congestion is well underway. This is typically too late for latency-sensitive high-throughput

applications.

RTT is the only continuous, high-resolution signal that combines the constant propagation delay

and the dynamic queuing delay of switches along the path. Timely [117] uses RTT gradient to infer

congestion in the network. The idea is that a change in RTT indicates that the queue occupancy

of at least one switch is changing. The end-host should change its cwnd only if the change is at the

bottleneck link. One could argue that the primary purpose of a congestion control algorithm is to

adjust the sending rate of the end-host to match the fair share rate determined by the bottleneck

link. But, of course, RTT does not necessarily tell about changes at the bottleneck; an increase in

1
The non-congestion related loss is ignored here, assuming that it is rare in a modern wireline network

CHAPTER 4. SUB-RTT CONGESTION CONTROL FOR LOWER NETWORK LATENCY 54

RTT does not mean the bottleneck is more congested and therefore does not mean the end-host

should reduce its sending rate. Additionally, RTT is the sum of all the delays encountered along

the path, so some queue occupancy values may decrease while others increase making RTT a noisy

estimate of congestion. If an end-host reacts to changes in the aggregate queue occupancy, it will

react to irrelevant changes at non-bottleneck links, even when its fair share rate at the bottleneck

has not changed.

ECN [47] is a single-bit marking on packets by switches in the network. Unlike RTT, the ECN

value does not change depending on the distance to the destination. If the queue occupancy on a

link is above a threshold, the packet’s ECN field is set with a particular probability distribution.

Consequently, congestion is completely ignored until the queue occupancy reaches the threshold

value which requires relatively larger bu↵er sizes. If the ECN bit is set, the current bottleneck

queue occupancy is guaranteed to be above the threshold. However, the binary ECN value does

not indicate how bad the congestion is. Instead, modern schemes such as [4, 175, 122] use ECN

marks from consecutive packets to infer the corresponding distribution and estimate the congestion

themselves. Some studies suggest that multiple bits of ECN marking improve these algorithms [135,

147], motivating a more precise signal.

4.1.2 A Non-Surrogate Signal - Stamping Queue Occupancy

At the risk of stating the obvious, in a packet-switched wireline network there is a direct relationship

between queue occupancy and congestion. They are equivalent ; by controlling one the other is

inherently controlled. The exact measure of current congestion is determined precisely by the current

queue occupancy (or queuing delay, which is queue occupancy divided by link rate) at links along

the path. There is no other direct measure of congestion in a packet-switched wireline network.

An end-host armed with an up-to-date measure of queue occupancy at the bottleneck has the best

possible signal of congestion.

If the bottleneck bu↵er goes empty, the capacity is wasted and hence the long-lived flows are

needlessly prolonged. Then the end-host should increase its sending rate or cwnd. If bu↵ers are

too full, packets for short flows are unnecessarily delayed, which requires end-hosts to back o↵.

Therefore, it is reasonable to provide queue occupancy as an explicit congestion signal from the

network.

Another way to think about this precise signal, as opposed to RTT measurements, is to consider

what happens when a cross-flow causes a non-bottleneck queue to temporarily go non-empty. In

CHAPTER 4. SUB-RTT CONGESTION CONTROL FOR LOWER NETWORK LATENCY 55

such cases, the sender does not need to adjust its cwnd to keep the bottleneck link busy because

the congestion conditions have not changed. As a consequence, end-hosts need to be able to ignore

irrelevant delay information to make the best decision on the cwnd or the sending rate.

Obtaining the queue occupancy information from a switch is now easier than ever before. In fact,

it was never technically di�cult or expensive [65, 96]. Nowadays, any new switch ASIC is required

to support INT [88] and hence is already capable of placing queue occupancy information into IP

or custom higher layer headers as they pass through.

There are erroneous claims that stamping packets with queue occupancy consumes significant

additional power. A modern high-end switch chip consumes very little power reading a queue

occupancy, increasing the packet size to hold it, and then placing the value into the header. In one

estimate, if every packet was stamped with its queue occupancy, it would add less than 0.05% to

the overall chip power. This is in part because the majority of the chip power is expended on fixed

overhead (leakage current, serial I/O) and per-packet (not per-bit) processing in a pipeline [9].

In fact, queue occupancy is a simple and free piece of information for the following reasons:

1. Switches always know the current queue occupancy value. To maintain one or more

FIFO queues, the switch must do internal bookkeeping to keep track of their occupancy.

2. Switches read the queue occupancy value anyway. As soon as a packet arrives, a switch

needs to read the current occupancy value to decide whether to queue the packet or drop it.

Similarly, the queue occupancy value is updated at the time of departure. There is no need to

read the value again.

3. ECN is already a form of queue occupancy stamping. ECN requires switches to read

the current queue occupancy value, compare it to a threshold, and (in the case of RED AQM)

toss a coin to decide whether to mark the packet. Queue occupancy stamping would be a very

similar procedure except using a larger field in the packet header.

With modern programmable switches [35, 20, 67, 18] and programming languages [23], network

owners can redefine how their switches process packets. A 700-line P4 program shows how metadata

can be stamped to support INT, showing it is trivial to add queue occupancy stamping to deployed,

programmable switches. Furthermore, there is no need to wait for new standards to be defined: the

network operator only picks a header location that works in their network and is agreed upon by

the end hosts. In a data center, this can be proprietary and chosen to work with existing protocols

and boxes. RFC 8592 [22] o↵ers guidelines to stamp packets with metadata. Once such precise

CHAPTER 4. SUB-RTT CONGESTION CONTROL FOR LOWER NETWORK LATENCY 56

information is extracted from the switches, all that is left is to deliver it to the CC decision-makers

as soon as possible.

4.2 Towards Minimal Control Loop Delay

Timely feedback and reaction to congestion are well understood to be valuable for CC [117]. The

goal of Bolt is to push the limits on minimizing the control loop delay that is composed of two

elements: (I) Feedback Delay (§4.2.1) – the time to receive any feedback for a packet sent, and

(II) Observation Period (§4.2.2) – the time interval over which feedback is collected before cwnd

is adjusted. Most CC algorithms send a window of packets, observe the feedback reflected by the

receiver over another window, and finally adjust the cwnd, having a total control loop delay that

is even longer than an RTT [4, 29, 54, 91, 102, 175]. This section describes both Feedback Delay

and Observation Period in detail and discusses how these elements can be reduced to their absolute

minimum motivating Bolt’s design in §4.3.

4.2.1 Feedback Delay

There are two main types of feedback to collect for congestion control purposes: (I) Congestion

Notification and (II) Under-utilization Feedback.

Congestion Notification

The earliest time a CC algorithm can react to drain a queue is when it first receives the notification

about it. Traditionally, congestion notifications are reflected by the receivers with acknowledgments

[4, 19, 91, 102, 117, 137, 175]. We call this the RTT-based feedback loop since the delay is exactly

one RTT.

An experiment where the congestion notification is delivered to the sender after a constant,

configured (i.e., artificial) delay (and not via acknowledgments) demonstrates how notification delay

a↵ects performance. Setting this artificial delay to the queuing delay plus the propagation time

in the experiment is equivalent to RTT-based control loops described above. The experiment runs

two flows with Swift CC [91] on a dumbbell topology2 where the second flow joins while the first

one is at a steady state. The congestion signal is the RTT the packet will observe with current

congestion. Figure 4.2 (left) shows the time to drain the congested queue for di↵erent notification

2
RTT is 8 µs and all the links are 100Gb/s.

CHAPTER 4. SUB-RTT CONGESTION CONTROL FOR LOWER NETWORK LATENCY 57

� � � � � ��
&RQVWDQW�)HHGEDFN�'HOD\��͐V�

�

��

��

��

��

��

7L
P
H�
WR
�'
UD
LQ
�4
XH
XH
��͐
V�

,QJ (JU 5FYU
)HHGEDFN�6RXUFH

Figure 4.2: E↵ect of notification delay on queue draining time.

delays. Clearly, smaller notification delay helps mitigate congestion faster as senders react sooner

to it.

More importantly, in addition to traveling unnecessary links, traditional RTT-based feedback

loops su↵er from the congestion itself because the notification waits in the congested queue before

it is emitted. Adding the queuing delay to the notification delay hinders tackling congestion even

more. During severe congestion events, this extra delay can add multiples of the base RTT to the

feedback delay [91].

To understand this more, the congestion mitigation time of scenarios where the notification

is generated at di↵erent locations in the network is also measured in Figure 4.2 (right). “Rcvr”

represents the RTT-based feedback loop where the congestion notification is piggybacked by the

receiver. “Egr” is when the switch sends a notification directly to the sender from the egress pipeline,

after the packet waits in the congested queue. “Ing” is when the notification is generated at the

ingress pipeline, as soon as a packet arrives at the switch. As expected, generating the congestion

notification as soon as possible improves performance by more than 2⇥.

Correspondingly, I stress that in order to reduce the notification delay to its absolute minimum,

the congestion notification should travel directly from the bottleneck back to the sender without

waiting in the congested queue.

Under-utilization Feedback

While flow arrival events add to congestion in the network, flow completion events open up capacity

to be used by other flows. Note that these events play an equally significant role in the network

performance because the number of flow completion events in a network is always equal to the number

CHAPTER 4. SUB-RTT CONGESTION CONTROL FOR LOWER NETWORK LATENCY 58

Sender 1

Sender 2

Switch

Last packet of sender 1 is transmitted
First under-utilization feedback by switch
Sender 2 detects under-utilization
Sender 2 starts ramping up

1
2
3
4

Under-utilization

2

1

43

(a) Reactive Ramp-Up

Sender 1

Sender 2

Switch

Notify switch that sender 1 is near completion
Switch notifies sender 2 about near completion
Sender 2 detects future under-utilization
Sender 2 starts ramping up

1
2
3
4

2

1

3 4

Full Utilization

(b) Proactive Ramp-Up

Figure 4.3: Under-utilization feedback

of flow arrival events. When a flow completes on a fully utilized link with zero queuing, the packets

of the completing flow leave the network and the link will suddenly become under-utilized until the

remaining flows ramp up (Figure 4.3a). As tra�c gets more dynamic, such under-utilization events

become more frequent, reducing the total network utilization. Therefore, in addition to detecting

congestion, a good control algorithm should also be able to detect any under-utilization in order to

capture the available bandwidth quickly and e�ciently [121].

In practice, CC schemes deliberately maintain a standing queue under a steady state, so that

when a flow completes, the packets in the queue can occupy the bandwidth released by the finished

flow until the remaining flows ramp up [101, 115]. For example, while HPCC was designed to keep

near-zero standing queue, the authors followed up that in practice, HPCC target utilization should

be set to 150% to improve network utilization [103], which implies half a BDP worth of standing

queue. Other CC schemes used in practice also maintain standing queues by filling up the bu↵ers

to a certain level before generating any congestion signal [4, 91, 175].

Figure 4.4 demonstrates how Swift behaves upon a flow completion when a long enough standing

queue is not maintained. There are two flows in the network3 and one of them completes at t = 200µs.

The remaining flow’s cwnd takes about 25 RTTs to occupy the released bandwidth as per the additive

increase mechanism in Swift. During this time interval, under-utilization happens despite the non-

zero queuing at a steady state. This under-utilization can also be observed when there are a larger

number of flows if the standing queue size is not adjusted appropriately [151].

Ideally, any remaining flow should immediately capture the cwnd of the completing flow without

under-utilizing the link. Therefore, an optimal congestion control algorithm is to detect flow com-

pletions early enough, proactively, to ramp up as soon as the spare capacity becomes available

(Figure 4.3b).

3
The dumbbell topology from Figure 4.2 (RTT: 8 µs, 100Gb/s links).

CHAPTER 4. SUB-RTT CONGESTION CONTROL FOR LOWER NETWORK LATENCY 59

� ��� ��� ���
7LPH��͐V�

�

�

�

�

�

4
XH
XH
�2
FF
XS
DQ
F\
��͐
V�

)ORZ
&RPSOHWLRQ

8QGHU
8WLOL]DWLRQ

�

��

���

���

&Z
QG
��.
%�

6ZLIW�4XHXLQJ
,GHDO�4XHXLQJ

6ZLIW�&ZQG
,GHDO�&ZQG

Figure 4.4: cwnd of the remaining Swift flow and queue occupancy after a flow completion.

Sender

Receiver

Congestion not detected
Congestion feedback reflected by receiver
Congestion observed, but cwnd not decreased
Cwnd decreased per earlier observation

1
2
3
4

1

2

3 4

Observation
Period

Control Loop Delay
RTT

Figure 4.5: Observation period adding up to an RTT to the control loop delay.

4.2.2 Observation Period

In addition to the feedback delay, the total control loop delay is usually one RTT longer for window-

based data center CC schemes. Namely, once the sender adjusts its cwnd, the next adjustment

happens only after an RTT to prevent reacting to the same congestion event multiple times. I call

this extra delay the observation period and illustrate it in Figure 4.5.

Once-per-window semantics are very common among CC schemes where the per-packet feedback

is aggregated into per-window observation. For example, DCTCP [4] counts the number of ECN

markings over a window and adjusts cwnd based on these statistics once every RTT. Swift compares

RTT against the target every time it receives an ACK but decreases cwnd only if it has not done so

in the last RTT. Finally, HPCC picks the link utilization observed by the first packet of a window

to calculate the reference cwnd which is updated once per window. As a consequence, flows stick

CHAPTER 4. SUB-RTT CONGESTION CONTROL FOR LOWER NETWORK LATENCY 60

�

�

��

4
XH
XL
QJ
��͐
V�

)ORZ�DUULYDO

6ZLIW
+3&&��,17�
,GHDO

� ��� ��� ��� ���
7LPH��͐V�

��

��

���

8W
LOL
]D
WLR
Q�
��
�

)ORZ�FRPSOHWLRQ

Figure 4.6: HPCC and Swift’s reaction to flow arrival and completion versus the ideal behavior.

to their cwnd decision for an RTT even if the feedback for a higher degree of congestion arrives

immediately after the decision.

Updating cwnd only once per window removes information about how dynamic the instantaneous

load was at any time within the window. This e↵ect, naturally, results in late and/or incorrect

congestion control decisions, causing oscillations between under and over-utilized (or congested)

links when flows arrive and depart. Consider the scenario3 in Figure 4.6 where a new flow joins the

network at t = 100µs while another flow is at its steady state. HPCC drains the initial queue built

up in a couple of RTTs, but immediately oscillates between under-utilization and queuing for a few

iterations. Moreover, the completion of a flow at t = 650µs again causes oscillations. Under highly

dynamic tra�c, such oscillations may increase tail latency and reduce network utilization.

An alternative way to avoid oscillations would be to react conservatively similar to Swift. It

also reduces cwnd only once in an RTT during congestion but uses manually tuned parameters (i.e.,

ai and �) to make sure reactions are not impulsive. Although oscillations are prevented this way,

Figure 4.6 shows that Swift takes a relatively long time to stabilize.

In conclusion, once per RTT decisions can lead to either non-robust oscillations or relatively

slow convergence. This is especially problematic in high-speed networks where flow arrivals and

completions are extremely frequent. Ideally, the shortest observation period would be a packet’s

serialization time because it is the most granular decision unit for packet-switched networks. Yet,

the per-packet CC decisions should only be incremental to deal with the noise from observations

CHAPTER 4. SUB-RTT CONGESTION CONTROL FOR LOWER NETWORK LATENCY 61

cwnd=4

cwnd=4

cwnd=5

cwnd=4

cwnd=3

cwnd=4

Bottleneck

Queuing

Under
Utilization

Zero Queuing
Full Utilization

Excess Packet:
Queuing

Packet Deficit:
Under-Utilizaiton

Figure 4.7: Pipe model of Packet Conservation Principle

over such a short time interval.

4.3 Designing Precise and Sub-RTT Congestion Control

Bolt is designed for ultra-low-latency even at very high line rates by striving to achieve the ideal

behavior shown in Figures 4.4 and 4.6. The design aims to reduce the control loop delay to its

absolute minimum as described in §4.2.1. First, the congestion notification delay is minimized by

generating notifications at the switches and reflecting them directly to the senders (§4.3.1). Second,

the flow completion events are signaled by the senders in advance to hide the latency of ramp-up and

avoid under-utilization (§4.3.2). Third, cwnd is updated after each feedback for quick stabilization

where the update is at most one per packet to be resilient to noise. Together, these three ideas allow

for a precise CC that operates on a per-packet basis minimizing incorrect CC decisions.

Prior works have separately proposed sub-RTT feedback [51, 140, 168], flow completion signaling

[53], and per-packet cwnd adjustments [50, 82] which are discussed in §2.2. Bolt’s main innovation

is weaving these pieces into a harmonious and precise sub-RTT congestion control that is feasible

for modern high-performance data centers. The key is to address congestion based on the packet

conservation principle [70] visualized in Figure 4.7 where a network path is modeled as a pipe with

a certain capacity of packets in-flight at a time. When the total cwnd is larger than the capacity

by 1, there is an excess packet in the pipe which is queued. If the total cwnd is smaller than the

capacity by 1, the bottleneck link will be under-utilized by 1 packet per RTT. Therefore, as soon

as a packet worth queuing or under-utilization is observed, one of the senders should immediately

decrement or increment the cwnd, without a long observation period.

Bolt’s fundamental way of minimizing feedback delay and the observation period while generating

precise feedback for per-packet decisions is materialized with 3 main mechanisms:

CHAPTER 4. SUB-RTT CONGESTION CONTROL FOR LOWER NETWORK LATENCY 62

1. SRC (Sub-RTT Control) reduces congestion notification delay to its absolute minimum.

(§4.3.1)

2. PRU (Proactive Ramp Up) hides any feedback delay for foreseen under-utilization events.

(§4.3.2)

3. SM (Supply Matching) quickly recovers from unavoidable under-utilization events. (§4.3.3)

To realize these 3 mechanisms, Bolt uses 9 Bytes of transport-layer header detailed in listing 4.1.

The purpose of each field is explained as the design of Bolt is described in this section and the

switching logic for Bolt is summarized in Algorithm 7.

Listing 4.1: Bolt header structure

1 header bolt_h:

2 bit<24> q_size; // Occupancy at the switch

3 bit<8> link_rate; // Rate of congested link

4 bit<1> data; // Flags data packets

5 bit<1> ack; // Flags acknowledgements

6 bit<1> src; // Flags switch feedback

7 bit<1> last; // Flags last wnd of flow

8 bit<1> first; // Flags first wnd of flow

9 bit<1> inc; // Signals cwnd increment

10 bit<1> dec; // Signals cwnd decrement

11 bit<1> reserved; // Reserved

12 bit<32> t_data_tx; // TX timestamp for data pkt

4.3.1 SRC - Sub-RTT Control

As discussed in §4.2.1, a smaller feedback delay improves the performance of CC. Therefore, Bolt

minimizes the delay of the feedback by generating control packets at the ingress pipeline of the

switches – before the data packet waits in the congested queue – and sending them directly back

to the sender, a mechanism available in programmable switches such as Intel-Tofino2 [94]. While

in spirit, this is similar to ICMP Source Quench messages [124] that have been deprecated due to

feasibility issues in the Internet [96], Bolt’s SRC mechanism exploits precise telemetry in a highly

controlled data center environment.

Figure 4.8 depicts the di↵erence in the paths traversed by the traditional ACK-based feedback

versus the SRC-based feedback mechanism. As SRC packets are generated at ingress, they establish

the absolute minimum feedback loop possible by traveling through the shortest path between a

CHAPTER 4. SUB-RTT CONGESTION CONTROL FOR LOWER NETWORK LATENCY 63

Algorithm 7: Bolt logic at the switch

1 BoltIngress (pkt):
2 if not pkt.data then ForwardAndReturn(pkt)
3 CalculateSupplyToken(pkt) . see Algorithm 9
4 if cur q size � CCTHRESH then . Congested
5 if not pkt.dec then
6 pktsrc.queue size switch.q size
7 pktsrc.link rate switch.link rate
8 pktsrc.t data tx pkt.tx time
9 SendSRC(pktsrc)

10 pkt.dec, pkt.inc 1, 0
11 else if pkt.last then . Near flow completion
12 if not pkt.first then pru token++
13 else if pkt.inc then . Pkt demands a token
14 if pru token > 0 then
15 pru token pru token� 1
16 else if sm token �MTU then
17 sm token sm token�MTU
18 else
19 pkt.inc 0 . No token for cwnd inc.
20 ForwardAndReturn(pkt);

Sender Receiver

SRC ACK

Figure 4.8: Path of ACK-based vs. SRC-based (Sub-RTT) feedback

congested switch and the sender. Moreover, to further minimize the feedback delay, Bolt prioritizes

ACK and SRC packets over data packets at the switches.

Bolt generates SRC packets for every data packet that arrives when the queue occupancy is

greater than or equal to the CCTHRESH which is trivially set to a single MTU for minimal queuing.

Yet, if there are multiple congested switches along the path of a flow, generating an SRC at each

one of them for the same data would flood the network with an excessive amount of control packets.

To prevent flooding switches mark the DEC flag of the original data packet upon generation of an

SRC packet, such that no further SRC packets at other hops can be generated due to this packet

(lines 5 and 10 in Algorithm 7). This implies that the number of SRC packets is bounded by the

number of data packets in the network at any given time. In practice, however, the actual load of

CHAPTER 4. SUB-RTT CONGESTION CONTROL FOR LOWER NETWORK LATENCY 64

SRC packets is found to be extremely lower (§4.5.2). An approximation for the additional load of

SRC packets is presented in §4.6.3.

When there are multiple congested hops, and the flow receives SRC packets only from the first

one, the cwnd decrement still helps mitigate congestion at all of them. Consequently, even if con-

gestion at the first hop is not as severe as the others, Bolt would drain the queue at the first hop

and quickly start working towards the subsequent hops.

Bolt stamps two vital pieces of information on the SRC packets – the current queue occupancy

and the capacity of the link. In addition, it reflects the TX timestamp of the original data packet

(lines 6-8 in Algorithm 7). As the sender receives this packet, it runs the decision logic shown in

Algorithm 8. First, rttsrc is calculated as the time between transmitting the corresponding data

packet and receiving an SRC packet for it. This is the congestion notification delay for Bolt, which is

always shorter than RTT and enables sub-RTT control. The reflection of the TX timestamp enables

this computation without any state at the sender. Next, reaction factor is calculated as a measure

of this flow’s contribution to congestion. Multiplying this value with the reported queue occupancy

gives the amount of queuing this flow should aim to drain. All the flows aiming to drain only what

they are responsible for organically help for a fair allocation.

Finally, rttsrc
targetq

gives the shortest time interval between two consecutive cwnd decrements. This

interval prevents over-reaction because switches keep sending congestion notifications until the e↵ect

of the sender’s cwnd change propagates to them. For example, if the target queue has a single packet,

the sender decrements its cwnd only if rttsrc has elapsed since the last decrement. However, if the

queue is larger, Bolt allows more frequent decrements to equalize the total cwnd change to the target

queue size in exactly one rttsrc. As the required cwnd adjustments are scattered over rttsrc, Bolt

becomes more resilient to noise from any single congestion notification.

Events such as losses and timeouts do not happen in Bolt as it starts reacting to congestion way

in advance. However, due to the possibility of such events occurring, say due to misconfiguration or

packet corruption, handling retransmission timeouts, selective acknowledgments, and loss recovery

are kept the same as in Swift [91] for completeness.

4.3.2 PRU - Proactive Ramp Up

Bolt explicitly tracks flow completions to facilitate Proactive Ramp Up (PRU). When a flow is

nearing completion, it marks outgoing packets to notify switches, which plan ahead on distributing

the bandwidth freed up by the flow to the remaining ones competing on the link. This helps

CHAPTER 4. SUB-RTT CONGESTION CONTROL FOR LOWER NETWORK LATENCY 65

Algorithm 8: Bolt logic at the sender host

1 HandleSrc (pktsrc):
2 rttsrc now � pkt.t tx data
3 reaction factor flow.rate/pktsrc.link rate
4 targetq pktsrc.queue size⇥ reaction factor . in number of packets
5 if rttsrc

targetq
 now � last dec time then

6 cwnd cwnd� 1
7 last dec time now
8 HandleAck (pktack):
9 if pktack.inc then . Capacity available

10 cwnd cwnd+ 1
11 if pktack.seq no � seq no at last ai then
12 cwnd cwnd+ 1 . per-RTT add. inc.
13 seq no at last ai snd next

remaining Bolt flows to proactively ramp up and eliminate the under-utilization period after a flow

completion (see Figure 4.3b).

When flows larger than one BDP are sending their last cwnd worth of data, they set the LAST flag

on packets to mark that they will not have packets in the next RTT. Note that this does not require

knowing the application-level flow size. In a typical transport like TCP, the application injects a

known amount of data to the connection at each send API call, denoted by the len argument [87].

Therefore, the amount of data waiting to be sent is calculable. LAST is marked only when the

remaining amount of data in the connection is within cwnd size. More detailed implementation is

described in §4.4.2.

A switch receiving the LAST flag, if it is not congested, increments the PRU token value for the

associated egress port. This value represents the amount of bandwidth that will be freed in the next

RTT. The switch distributes these tokens to packets without the LAST flag, i.e., flows that have

packets to send in the next RTT, so that senders can ramp up proactively.

However, only flows that are not bottlenecked at other hops should ramp up. To identify such

flows, Bolt uses a greedy approach. When transmitting a packet, senders mark the INC flag on

the packet. If a switch has PRU tokens (line 14 in Algorithm 7) or has free bandwidth (line 16 in

Algorithm 7, explained in §4.3.3), it keeps the flag on the packet and consumes a token (line 15 and

17, respectively). Else, the switch resets the INC flag (line 19), preventing future switches on the

path to consume a token for this packet. Then, if no switch resets the INC flag along the path, it is

guaranteed that all the links on the flow’s path have enough bandwidth to accommodate an extra

packet. The receiver reflects this flag in the ACK so that the sender simply increments the cwnd

CHAPTER 4. SUB-RTT CONGESTION CONTROL FOR LOWER NETWORK LATENCY 66

upon receiving it (lines 9-10 in Algorithm 8). There are cases where the greedy approach can result

in wasted tokens. The fallback mechanisms for these cases are discussed in §4.3.3.

Flows shorter than one BDP are not accounted for in PRU calculations. When a new flow starts,

its first cwnd worth of packets are not expected by the network and contribute to the extra load.

Therefore, the switch shouldn’t replace these with packets from other flows once they leave the

network. Bolt prevents this by setting the FIRST flag on packets that are in the first cwnd of the

flow. Switches check against the FIRST flag on packets before they increment the PRU token value

(line 12 of Algorithm 7).

Note that PRU doesn’t need reduced feedback delay via SRC packets, because it accounts for a

flow completion in the next RTT by design. A sender shouldn’t start ramping up earlier as it can

cause extra congestion before the flow completes. Therefore, the traditional RTT-based feedback

loop is the right choice for correct PRU accounting.

4.3.3 SM - Supply Matching

Events like link and device failures or route changes can result in under-utilized links without proac-

tive signaling. In addition, PRU tokens may be wasted if assigned to a flow that can not ramp up due

to being already at line rate or bottlenecked by downstream switches. For such events, conventional

CC approaches rely on gradual additive increase to slowly probe for the available bandwidth which

can take several tens of RTTs [4, 91, 117, 175]. Instead, Bolt is able to probe multiplicatively by

explicitly matching utilization demand to supply through Supply Matching (SM) described below.

Bolt leverages stateful operations in programmable switches to measure the instantaneous uti-

lization of a link. Each switch keeps track of the mismatch between the supply and demand for

the link capacity for each port, where the number of bytes the switch can serialize in unit time is

the supply amount for the link; and the number of bytes that arrive in the same time interval is

the demand for the link. Naturally, the link is under-utilized when the supply is larger than the

demand, otherwise, the link is congested. Note the similarity to HPCC [102] that also calculates

link utilization, albeit from an end-to-end point of view which restricts it to make once per RTT

calculations. Bolt o✏oads this calculation to the switch data plane so that it can capture the precise

instantaneous utilization instead of a coarse-grained measurement.

When a data packet arrives, the switch runs the logic in Algorithm 9 to calculate the supply

token value (sm token in the algorithms) associated with the egress port. The token accumulates

the mismatch between the supply and demand in bytes on every packet arrival for a port. A negative

CHAPTER 4. SUB-RTT CONGESTION CONTROL FOR LOWER NETWORK LATENCY 67

Algorithm 9: Supply Token calculation at the ingress pipeline for each egress port

1 CalculateSupplyToken (pkt):
2 inter arrival time now � last sm time
3 last sm time now
4 supply BW ⇥ inter arrival time
5 demand pkt.size
6 sm token sm token+ supply � demand
7 sm token min (sm token,MTU)

value of the token indicates queuing whereas a positive value means under-utilization. When the

token value exceeds one MTU, Bolt keeps the INC flag on the packet and permits the sender to

inject an additional packet into the network (lines 16-17 in Algorithm 7). The supply token value is

then decremented by an MTU to account for the inflicted future demand.

If a switch port doesn’t receive a packet for a long time, the supply token value can get arbitrarily

large, which prohibits capturing the instantaneous utilization if a burst of packets arrives after an

idle period. To account for this, Bolt caps the supply token value at a maximum of one MTU. Details

on how this feature is implemented in P4 are provided in §4.4.

As noted earlier, there are cases where there can be wasted tokens, i.e., a switch consumes a token

(either PRU or SM) to keep INC bit but is reset by downstream switches. In such cases, SM will

find the available bandwidth in the next RTT. In the worst case, this happens for consecutive RTTs

and Bolt falls back to additive increase similar to Swift [91] (lines 12-14 in Algorithm 8). Namely,

cwnd is incremented once every RTT to allow flows to probe for more bandwidth and achieve fairness

even if they do not receive any precise feedback as a fail-safe mechanism.

4.4 Implementing Bolt Congestion Control

Bolt is implemented through Host (transport layer and NIC) and Switch modifications in the lab.

Snap [110] is used as the foundational user-space transport layer and Bolt is added in 1340 LOC

in addition to the existing Swift implementation. Plus, the switch-side implementation consists of

a P4 program – bolt.p4 – in 1120 LOC. Figure 4.9 shows the overview of the lab prototype as a

whole and details are provided below.

CHAPTER 4. SUB-RTT CONGESTION CONTROL FOR LOWER NETWORK LATENCY 68

Arrival Time

Supply Token

PRU Token

Queue Size

Buffer

SwitchINC Flag

TX Time

NIC

Sender

First
& Last
Window
Flags

Flow NIC

Receiver

Flow

DATA

B
o
l
t

INC
Flag

Register Arrays

DATA

B
o
l
t

S
R
CCC

A
C
K CC

Figure 4.9: Bolt system overview

4.4.1 Switch Prototype

The implementation is based on the programmable data plane of Intel Tofino2 [35] switches as they

can provide the queue occupancy of the egress ports in the ingress pipelines and generate SRC

packets [94]. This is crucial for Bolt to minimize the feedback delay incurred by SRC packets as

they are not subject to queuing delay at congested hops.

When congestion is detected in the ingress pipeline, the switch mirrors this packet to the input

port while forwarding the original one along its path. The mirroring configuration is determined

with a lookup table that matches the ingress port of the packet and selects the associated mirroring

session.

The mirrored packet is then trimmed to remove the payload and the flow identifiers (i.e.,

source/destination addresses and ports) are swapped. Finally, SRC flag is set on this packet to

complete its conversion into an SRC packet.

The entire bolt.p4 consists mainly of register array declarations and simple if-else logic as shown

in Algorithm 7. There are 4 register arrays for storing queue occupancy, token values, and the last

packet arrival time. All of the register arrays are as large as the number of queues on the switch

because the state is maintained per queue. In total, only 3.6% and 0.6% of available SRAM and

TCAM, respectively, are used for the register arrays, tables, and counters.

The switch keeps the last packet arrival time for every egress port to calculate the supply for the

link. On each data packet arrival, the di↵erence between the current timestamp and the last packet

arrival time is calculated as the inter-arrival time. This value should ideally be multiplied with

the link capacity (line 4 of Algorithm 9) to find the supply amount. However, since floating point

arithmetic is not available in PISA pipelines, a lookup table indexed on inter-arrival times is used to

CHAPTER 4. SUB-RTT CONGESTION CONTROL FOR LOWER NETWORK LATENCY 69

determine the supply amount. The size of this lookup table is set as 65536 where each entry is for

a di↵erent inter-arrival time with a granularity of a nanosecond. Consequently, if the inter-arrival

time is larger than 65 microseconds, the supply token value is directly set to its maximum value of

1 MTU which triggers INC flag to be set. We find that, at a reasonably high load, 65 microseconds

of inter-arrival time is rare enough for links greater than 100Gb/s such that any longer value can be

safely interpreted as under-utilization.

The Bolt prototype is based on a single HW pipeline. Therefore, the Bolt logic is implemented

entirely at the ingress pipeline to make it easier to understand and debug its logic. However, since

PRU and SM maintain state per egress port, they could also be implemented at the egress pipeline

with minor modifications. This way, the state for packets from multiple ingress pipelines would

naturally be aggregated.

4.4.2 Host Prototype

The Snap transport layer uses the NIC hardware timestamps to calculate rttsrc as described in

Algorithm 8. When a sender is emitting data, the TX timestamp is stamped onto the packet. The

switch reflects this value back to the sender, so that rttsrc is the di↵erence between the NIC time

when the SRC packet is received (RX timestamp) and the reflected TX timestamp. This precisely

measures the network delay to the bottleneck without any non-deterministic software processing

delays.

The transport layer also multiplexes RPCs meant for the same server onto the same network

connection. Then, the first cwnd bytes of a new RPC aren’t necessarily detected as the first window

of the connection. To mitigate this issue, the Bolt prototype keeps track of idle periods of connections

and resets the bytes-sent counter when a new RPC is sent after such a period. Therefore the FIRST

flag is set on a packet when the counter value is smaller than cwnd.

Finally, the last window marking for PRU requires determining the size of the remaining data

for each connection. In the prototype, the connection increments pending bytes counter by the size

of data in each send API call from the application. Every time the connection transmits a packet

into the network, the counter value is decremented by the size of the packet. Therefore the LAST

flag is set on a packet when this counter value is smaller than cwnd. On a standard Linux kernel

implementation, equivalent signaling can be achieved by setting the LAST flag whenever the send

bu↵er occupancy is smaller than cwnd.

Alternatively, some modern applications know the size of the flows they will create in advance,

CHAPTER 4. SUB-RTT CONGESTION CONTROL FOR LOWER NETWORK LATENCY 70

e.g., distributed ML training [136]. If such applications could reveal this information to the transport

layer, Bolt could use it to start PRU signaling as well. However, developing this interface between the

applications and the transport layer would be disruptive to existing implementations of networking

stacks and applications. Hence, Bolt’s design focuses on self-contained transport layer solutions and

leaves inter-layer collaboration as an interesting future work.

4.4.3 Security and Authentication

Getting Bolt to work for encrypted and authenticated connections was a key challenge in the lab. The

prototype uses a custom version of IPsec ESP [68, 85] for encryption atop the IP Layer. However,

switches need to read and modify CC information at the transport header without breaking end-to-

end security. The crypt o↵set of the protocol allows packets to be encrypted only beyond this o↵set.

It is set such that the transport header is not encrypted, but is still authenticated.

In addition, switches cannot generate encrypted packets due to the lack of encryption and decryp-

tion capabilities. To remedy this, SRC packets are generated on switches as unreliable datagrams

per RoCEv2 standard by adding IB BTH and DETH headers while removing the encryption header.

The RoCEv2 packets have the invariant CRC calculated over the packet and appended as a

trailer. Fortunately, Tofino2 provides a CRC extern that is capable of this calculation over small,

constant-size packets [92]. As a result, NICs are able to forward the SRC packets correctly to the

upper layers based on the queue pair numbers (QPN) on the datagrams.

4.5 Evaluating Bolt

Bolt is evaluated on NS3 [138] micro-benchmarks to demonstrate its fundamental capabilities in

§4.5.1 followed by sensitivity and fairness analysis in §4.5.2 and §4.5.3. Then, large-scale experiments

are run in §4.5.4 to measure the end-to-end performance of the algorithm, i.e., flow completion time

slow-downs. Finally, the lab prototype is evaluated in §4.5.5.

4.5.1 Micro-Benchmarks

Significance of SRC

The only way for Bolt to decrease cwnd is through SRC whose e↵ectiveness is best observed during

congestion. Therefore, the same flow arrival scenario described in Figure 4.6 is repeated with Bolt.4

4
The dumbbell topology with two flows (8 µs RTT at 100Gb/s).

CHAPTER 4. SUB-RTT CONGESTION CONTROL FOR LOWER NETWORK LATENCY 71

�

�

�

��

4
XH
XL
QJ
��͐
V�

%ROW
6ZLIW
+3&&
577�EDVHG�,GHDO

��� ��� ��� ��� ���
7LPH��͐V�

��

��

���

8W
LOL
]D
WLR
Q�
��
�

Figure 4.10: Bolt’s reaction to flow arrival versus the ideal behavior.

Typically, with conventional RTT-based congestion control algorithms, a new flow starting at line

rate emits BDP worth of packets until it receives the first congestion feedback after an RTT. If the

network is already fully utilized before this flow, all emitted packets end up creating a BDP worth

of queuing even for an RTT-based ideal scheme. Then, the ideal scheme would stop sending any

new packets to allow draining the queue quickly which would take another RTT. This behavior is

depicted as red in Figure 4.10 where a new flow joins at 100µs.

HPCC’s behavior in Figure 4.6 is close to the ideal given that it is an RTT-based scheme with

a high precision congestion signal. As the new flow arrives, the queue occupancy rises to 1 BDP.

However, the queue is drained at a rate slower than the link capacity because flows continue to

occasionally send new packets while the queue is not completely drained.

Bolt, on the other hand, detects congestion earlier than an RTT. Therefore it starts decrementing

cwnd before the queue occupancy reaches BDP and completely drains it in less than 2 RTTs, even

shorter than the RTT-based ideal scheme.

In addition, HPCC’s link utilization drops to as low as 75% after draining the queue and oscillates

for some time, which is due to the RTT-long observation period (§4.2.2). Bolt’s per-packet decision

avoids this under-utilization.

CHAPTER 4. SUB-RTT CONGESTION CONTROL FOR LOWER NETWORK LATENCY 72

��� ��� ��� ��� ��� ��� ���
7LPH��͐V�

�

�

�

�

�

4
XH
XH
�2
FF
XS
DQ
F\
��͐
V�

)ORZ
&RPSOHWLRQ

%ROW�4XHXLQJ
,GHDO�4XHXLQJ

�

��

���

���

&Z
QG
��.
%�

%ROW�&ZQG
6ZLIW�&ZQG

+3&&�&ZQG
,GHDO�&ZQG

Figure 4.11: Queuing and cwnd of the remaining flow after a flow completes. See Figure 4.4 for the
complete ramp-up of Swift.

Significance of PRU

Flow completions cause under-utilization without proactive ramp-up or standing queues because

conventional congestion control algorithms take at least an RTT to react to them (§4.2.1). Moreover,

as shown in Figure 4.4 for Swift, a standing queue might not be enough to keep the link busy if the

cwnd of the completing flow is larger than the queue size.

The same scenario is repeated with Bolt to test how e↵ective proactive ramp-up can be upon

flow completions against Swift and HPCC. Figure 4.11 shows the cwnd of the remaining flow and the

queue occupancy at the bottleneck link. When a Bolt flow completes at t=200µs, the remaining one

is able to capture the available bandwidth in 1µs because it starts increasing cwnd (by collecting PRU

tokens) one RTT earlier than the flow completion. Moreover, neither queuing nor under-utilization is

observed. HPCC, on the other hand, takes 20µs (> 2⇥RTT) to ramp up for full utilization because

it needs one RTT to detect under-utilization and another RTT of observation period before ramping

up. Finally, Swift takes more than 370µs to reach the stable value due to the slow additive increase

approach which doesn’t fit into Figure 4.11. The complete ramp-up of Swift is shown in Figure 4.4.

Although PRU and SM seem to overlap in the way they quickly capture available bandwidth,

PRU is a faster mechanism compared to SM because it detects under-utilization proactively. To

demonstrate that, a star topology is created with 100Gb/s links and a base RTT of 5µs, where 5

senders send 500KB to the same receiver. Flows start 15µs apart from each other to complete at

CHAPTER 4. SUB-RTT CONGESTION CONTROL FOR LOWER NETWORK LATENCY 73

Utilization (%) PRU OFF PRU ON

SM
OFF 90.46 97.38
ON 92.41 98.54

Table 4.1: E↵ectiveness of Bolt’s PRU and SM on the bottleneck utilization.

� ��� ��� ���
7LPH��͐V�

�

�

�

�

�

4
XH
XH
�2
FF
XS
DQ
F\
��͐
V�

)ORZ
5HURXWH

�

��

���

���

&Z
QG
��.
%�

%ROW
,GHDO�4XHXLQJ

%ROW
,GHDO�&ZQG

(a) Bolt

� ��� ��� ���
7LPH��͐V�

�

�

�

�

�

4
XH
XH
�2
FF
XS
DQ
F\
��͐
V�

)ORZ
5HURXWH

8QGHU
8WLOL]DWLRQ

�

��

���

���

&Z
QG
��.
%�

%ROW��Z�R�60�
,GHDO�4XHXLQJ

%ROW��Z�R�60�
,GHDO�&ZQG

(b) Bolt (without SM)

Figure 4.12: cwnd of the remaining Bolt flow and queue occupancy after a flow is rerouted.

di↵erent times so that PRU and SM can kick in. The experiment is repeated while disabling PRU or

SM and measuring the bottleneck utilization to observe how each mechanism is e↵ective at achieving

high throughput.

Table 4.1 shows the link utilization between the first flow completion and the last one. When only

PRU is disabled, the utilization drops by 6% despite having SM. On the other hand, disabling SM

alone causes only a 1% decrease. This indicates that PRU is a more powerful mechanism compared

to SM when under-utilization is mainly due to flow completions in the network. Together, they

increase utilization by 8%.

Significance of SM

Unlike flow completions, events such as link failure or rerouting are not hinted in advance. Then,

PRU doesn’t kick in, making Bolt completely reliant on SM for high utilization. To demonstrate

how SM quickly captures available bandwidth, the same setup from Figures 4.4 and 4.11 are used,

but the second flow is rerouted instead of letting it complete.

Figure 4.12 shows the cwnd of the remaining flow after the other one leaves the bottleneck.

Thanks to SM, cwnd quickly ramps up to utilize the link in 23µs (Figure 4.12a). When SM is

disabled, the only way for Bolt to ramp up is through traditional additive increase which increases

CHAPTER 4. SUB-RTT CONGESTION CONTROL FOR LOWER NETWORK LATENCY 74

� �� �� �� �� �� ��

����

����

����

*
ES
V

%76�%DQGZLGWK

� �� �� �� �� �� ��
��6HQGHUV

���

���

͐V

���LOH�4XHXLQJ

Figure 4.13: SRC overhead and sensitivity for di↵erent levels of burstiness

cwnd by 1 every RTT (Figure 4.12b). Therefore it takes more than 33 RTTs to fully utilize the link.

4.5.2 Sensitivity Analysis

Overhead of SRC

To mitigate congestion, Bolt generates SRC packets in an already-loaded network. In order to

understand the extra load created by SRC, the bandwidth occupied by SRC packets at di↵erent

burstiness levels is measured. For this purpose, the same star topology from §4.5.1 is used. The

number of senders changes between 1 and 63 to emulate di↵erent levels of burstiness towards a single

receiver at 80% load. The tra�c is based on the READ RPC workload from Figure 4.1.

Figure 4.13 shows the bandwidth occupied by the SRC packets (top) and the 99th-p queue

occupancy at the bottleneck (bottom) with a di↵erent number of senders. When there are multiple

senders, the SRC bandwidth is stable at 0.33Gb/s (0.33% of the capacity). Similarly, the tail queuing

is also bounded below 6.4µs for all the experiments. Therefore, one can conclude that Bolt is able

to limit congestion with a negligible amount of extra load in the network. In §4.5.5, it is shown that

the overhead is negligible for the lab prototype as well.

CHAPTER 4. SUB-RTT CONGESTION CONTROL FOR LOWER NETWORK LATENCY 75

��� ��� ��� ��� ��� ��� ��� ��� ��� �
)ORZ�VL]H��1RUPDOL]HG�WR����*�%'3�

�

�

�

�

��

��

)&
7�
6O
RZ
�G
RZ
Q

%ROW����*
%ROW����*
%ROW����*

6ZLIW����*
6ZLIW����*
6ZLIW����*

+3&&����*
+3&&����*
+3&&����*

Figure 4.14: 99th-p Slowdown for messages smaller than BDP at line rates higher than 100Gb/s

Robustness Against Higher Line Rates

One of the goals of Bolt is to be robust against ever-increasing line rates in data centers. To evaluate

the performance at di↵erent line rates, the previous simulations is repeated with 63 senders where

the link capacity is increased from 100Gb/s to 200Gb/s and 400Gb/s. This way, the burstiness of

the senders increases, making it di�cult to maintain small queuing at the switches. Therefore, flow

completion time (FCT) slowdown5 of small flows are a↵ected the most, whereas throughput oriented

large flows would trivially be better o↵ with higher line rates [43].

Accordingly, only the 99th-p FCT slowdown for flows that are smaller than BDP (at 100 Gb/s)

are plotted in Figure 4.14. Swift’s performance monotonically decays with higher link rates due to

the increasing burstiness. Similarly, HPCC at 400Gb/s achieves 25% worse performance compared

to the 100Gb/s scenario for flow sizes up to 0.7 BDP. For the rest of the workload, HPCC makes

a leap such that it performs worse than other algorithms irrespective of the line rates. Bolt on the

other hand is able to maintain small and steady tail slowdowns for all the small flows despite the

increasing line rates.

4.5.3 Fairness Analysis

The fairness of Bolt was tested with an experiment on a dumbbell topology with 100Gb/s links. In

this experiment, a new flow is added or an existing one is removed every 10 milliseconds. Then, the

5
FCT slowdown is flow’s actual FCT normalized by its ideal FCT when the flow sends at line-rate, e.g., when it

was the only flow in the network.

CHAPTER 4. SUB-RTT CONGESTION CONTROL FOR LOWER NETWORK LATENCY 76

� �� �� �� �� �� �� ��
7LPH��PVHF�

�

��

��

��

��

���

7K
UR
XJ
KS
XW
��*
ES
V�

)ORZ��
)ORZ��
)ORZ��
)ORZ��

Figure 4.15: Fair share allocation by Bolt

Metric Swift HPCC Bolt

99th-p Queuing (msec) 23.543 23.066 13.720
99th-p FCT Slowdown 7017 5037 5000

Table 4.2: Tail queuing, and FCT slowdown for Bolt, HPCC, and Swift in a 5000-to-1 incast.

throughput of each flow is measured which is shown in Figure 4.15. The results indicate that Bolt

flows converge to the new fair share quickly when the state of the network changes.

4.5.4 Large Scale Simulations

One of the most challenging cases for CC is a large-scale incast. To evaluate Bolt’s performance

in such a scenario, a 5000-to-1 incast is set up on the star topology described earlier where each

one of 50 senders starts 100 same-size flows at the same time. Table 4.2 presents the 99th-p queue

occupancy and FCT slowdown for the incast. Since Bolt detects congestion as early as possible, it

bounds tail queuing to a 41% lower level compared to Swift and HPCC. In addition, the tail FCT

slowdown for Bolt is 5000, indicating full link utilization. Moreover, the bandwidth occupied by the

SRC packets is as low as 0.77Gb/s throughout the incast. This is only twice the overhead for 80%

load in §4.5.2, despite the extreme bursty arrival pattern of the incast.

CHAPTER 4. SUB-RTT CONGESTION CONTROL FOR LOWER NETWORK LATENCY 77

��
� �. ��

.
��
.

��
.

��
.

��
�.

��
�. �0 ��

0

)ORZ�VL]H��%\WHV�

�

��

���

)&
7�
6O
RZ
�G
RZ
Q

%ROW�����S
%ROW�����S
%'3

6ZLIW�����S
6ZLIW�����S

+3&&�����S
+3&&�����S

Figure 4.16: FCT slowdown for READ RPC Workload from Figure 4.1

The performance of Bolt on a cluster-scale network is evaluated as well. In this simulation,

64 servers are connected with 100Gb/s links to a fully subscribed fat-tree topology with 8 ToR

switches. All the other links in the simulation are 400Gb/s and the maximum unloaded RTT is 5µs.

The servers run tra�c based on two workloads at 80% load: (i) the READ RPC workload described

in Figure 4.1 represents tra�c from Google data centers, (ii) the Facebook Hadoop workload [139].

Figure 4.16 and 4.17 show the median and 99th-p FCT slowdown for the workloads. Note that the

Hadoop workload is relatively more bursty where 82% of the flows/RPCs fit within a BDP in the

given topology. Hence a large fraction of the curves in Figure 4.17 is flat where all the RPCs in this

region are extremely small (i.e., single packet).

For both of the workloads, Bolt performs well across all flow sizes. Specifically, Bolt and HPCC

achieve very low FCT for short flows (<7KB) because of a few design choices: First, they maintain

zero standing queues. Plus, Bolt’s SRC reduces the height of queue spikes after flow arrivals. HPCC,

on the other hand, tends to under-utilize the network upon flow completions (§4.2.1), statistically

reducing queue sizes.

FCT of median-size flows (a few BDPs) starts to degrade for HPCC due to under-utilization

described in §4.2.1 and §4.2.2. Bolt performs up to 3⇥ better in this regime by avoiding under-

utilization thanks to PRU and SM. Swift’s standing queues prevent under-utilization, but FCTs are

high because median-size flows are also a↵ected by the queuing delay.

The impact of queuing diminishes and utilization becomes the dominant factor for long flows.

Therefore Bolt and Swift perform better than HPCC. In addition, Bolt is slightly better at the tail

CHAPTER 4. SUB-RTT CONGESTION CONTROL FOR LOWER NETWORK LATENCY 78

��
�

��
�

��
�

��
�

��
� �. �. ��

.
��
�. ��

0

)ORZ�VL]H��%\WHV�

�

��

���

)&
7�
6O
RZ
�G
RZ
Q

%ROW�����S
%ROW�����S
%'3

6ZLIW�����S
6ZLIW�����S

+3&&�����S
+3&&�����S

Figure 4.17: FCT slowdown for Facebook Hadoop Workload

compared to Swift, while Swift is slightly better at the median, suggesting that Bolt is fairer.

4.5.5 Bolt in the Lab

Bolt’s lab testbed consists of 2 servers and 2 Intel Tofino2 [35] switches. Each server runs 4 packet

processing engines running Snap [110] that provide the transport layer with the Bolt algorithm. Each

engine is scheduled on a CPU core that independently processes packets so that a large number of

connections can be created between the servers. Links from the servers to the switches are 100Gb/s

and the switches are connected with a 25Gb/s link to guarantee that congestion takes place within

the network. The base-RTT in this network is 14µs and flows between the servers are generated

based on the READ RPC workload.

Bolt is evaluated on two scenarios. First, a 100% (of 25Gb/s) load is run to see if the prototype can

saturate the bottleneck. Then, a 80% load is run to compare the congestion mitigation performance

of Bolt against Swift in a more realistic scenario. Finally, the results from the lab and the simulations

are compared to verify the simulator implementations.

The median and the 99th-p RTT at 100% load for Swift are 189µs and 208µs respectively. These

numbers are high because Swift maintains a standing queue based on the configured base delay to

fully utilize the link even after flow completions. Bolt, on the other hand, attains 27µs and 40µs

of median and tail RTT, 86% and 81% shorter than Swift. In the meantime, it achieves 24.7Gb/s

which is only 0.8% lower compared to Swift despite the lack of a standing queue.

The same experiment is repeated with 80% load. The results show that both Swift and Bolt

CHAPTER 4. SUB-RTT CONGESTION CONTROL FOR LOWER NETWORK LATENCY 79

� �� ��
�
��
�
��
�
��
�
��
�
��
�
��
�

577��͐V�

���

���

���

���

���

���

&'
)

%ROW��/DE�
%ROW��1V���
6ZLIW��/DE�

Figure 4.18: Bolts’s lab prototype matches its simulator

can sustain 80% (20Gb/s) average link utilization. Figure 4.18 shows the CDF of measured RTTs

throughout the experiment. Similar to the 100% load case, the median and tail RTTs for Bolt are

25µs and 40µs, 86% and 83% lower compared to Swift respectively.

For Swift in this experiment, the base target delay is set as 50µs and the flow scaling range as

200µs, which are the specified values in the paper [91]. Swift’s average RTT in Figure 4.18 is higher

than Swift paper’s value (⇠50µs), because of two reasons. First, this workload is burstier than the

ones in Swift paper. Second, the 25Gb/s bottleneck implies a higher level of flow scaling than with

100Gb/s links.

Moreover, the bandwidth occupied by the SRC packets is measured in the lab as 0.13Gb/s,

0.536% of the bottleneck capacity. This is consistent with the observation in §4.5.2 despite the

larger SRC packets with custom encapsulations.

Finally, the 80% load experiment is simulated in NS3 [138] with the same settings to verify

that the simulator matches the observations in the lab. Figure 4.18 also shows the CDF of RTTs

measured throughout the simulation. The median and tail RTTs from the simulations are 21µs and

39µs, within 15% and 0.025% of the lab results respectively. These results give confidence when

interpreting the results of larger-scale simulations of Bolt.

CHAPTER 4. SUB-RTT CONGESTION CONTROL FOR LOWER NETWORK LATENCY 80

4.6 Discussion

4.6.1 Practical Considerations

Typically, new products are deployed incrementally in data centers due to availability, security, or

financial concerns. As a consequence, the new product (i.e., the CC algorithm) lives together with

the old one for some time called brownfield deployment. There are four potential issues that Bolt

could face during this phase, which are addressed below.

First, some switches in the network may not be capable of generating SRC packets while new

programmable switches are being deployed. Unfortunately, the vanilla Bolt design cannot control

the congestion at these switches. This can be addressed by running an end-to-end algorithm on

top of Bolt. For example, imagine the Swift algorithm calculates a fabric cwnd as usual in parallel

with Bolt’s calculation of cwnd using SRC packets. Then, the minimum of the two is selected as

the e↵ective cwnd for the flow. When an older generation switch is congested, SRC packets are

not generated, but Swift adjusts the cwnd. Consequently, flows benefit from ultra-low queuing at

the compatible switches while falling back to Swift when a non-programmable switch becomes the

bottleneck.

Moreover, while queue occupancy stamping is quite promising, the use of other signals might

still be beneficial to end-hosts. For example, a congestion control algorithm might measure RTT

in addition to queue occupancy stamps, similar to combining RTT and ECN as in [169]. While

bottleneck queue occupancy helps the end-host to converge to max-min fair rate allocation, RTT

value could be used to determine proportionally fair resource allocation across the network. A flow

with high RTT but low bottleneck queue occupancy could still be throttled to prevent over-utilization

of other network resources.

The second possible issue with Bolt’s deployment would be the incremental migration of end-

hosts to Bolt. Then, Bolt would need to coexist with the prior algorithm. Studying the friendliness

of algorithms with Bolt through frameworks such as [72] and [162] remains a future work. For

example, TCP CUBIC would not coexist well with Bolt as it tries to fill the queues until a packet

is dropped while Bolt continuously decrements its cwnd due to queuing. Instead, the use of QoS

(Quality of Service) queues can be useful to isolate Bolt tra�c from the rest. §4.6.2 describes a

baseline approach for such deployment.

Third, the transport o✏oading on modern smart NICs uses batching to sustain high line rates.

Scenarios where packet transmissions are batched even when the cwnd is smaller than BDP can still

CHAPTER 4. SUB-RTT CONGESTION CONTROL FOR LOWER NETWORK LATENCY 81

trigger SRC generation, inhibiting flows to increase cwnd to the right value. Bolt can alleviate such

bursts with a higher CCTHRESH that tolerates batch size worth of queuing at the switches.

Finally, Bolt is designed to run on Tofino programmable switch architecture, but Intel has

discontinued the development of the future generations for Tofino. This should not be a game-

stopper for Bolt because programmability was just a utility while designing the algorithm. Now

that it is designed and evaluated, its logic can also be implemented on fixed-function ASICs to assist

network owners if needed. Essentially, most switches that are capable of exposing switch bu↵er

occupancy, maintaining counters (i.e., token values), and stamping packets based on those counter

values can be configured to run the Bolt logic. Validating this hypothesis on an actual commercial

switch remains as an interesting industry challenge.

4.6.2 Bolt with QoS

The relationship between congestion control algorithms and QoS has always been contradictory.

An ideal congestion control algorithm aims to mitigate any queuing at the switch, whereas a QoS

mechanism always needs enough queuing to be able to di↵erentiate packet priorities and serve one

before the other. Put another way, QoS only takes e↵ect when the arrival rate at a link is greater

than the capacity such that it causes queue build-up. Yet, QoS is vital for commercial networks to

be able to di↵erentiate applications or tenants for business-related reasons [15]. This is particularly

true for unavoidable transient congestion events, e.g., incast.

Fortunately, the way Bolt reports queue occupancy is QoS-agnostic such that it can generate SRC

packets with the occupancy of the queue assigned by the QoS mechanism. Consequently, it would

try to minimize queuing at that particular queue. Similarly, the way PRU tokens are calculated

would be queue-specific instead of being egress port-specific. For example, if there are P ports on

a switch and n QoS levels per port, the size of the register array that maintains the token values

would be of P ⇥ n and flows would only be able to proactively ramp up if another flow with the

same QoS level is about to finish.

On the other hand, accounting for the supply token requires the service rate for the associated

queue (§4.3.3) which would be a dynamic value depending on the current demand for di↵erent QoS

levels. There are at least two approaches for maintaining supply tokens correctly and implementing

a QoS-aware version of Bolt on programmable switches.

CHAPTER 4. SUB-RTT CONGESTION CONTROL FOR LOWER NETWORK LATENCY 82

Algorithm 10: Supply Token calculated for QoS queue i at the switch with n QoS levels
serving the same egress port

1 Function CalculateSupplyToken(pkt):
2 inter arrival time now � last sm time
3 last sm time now
4 weffective 0
5 for j 0 to n do
6 if i = j or q sizej 6= 0 then
7 weffective weffective + wj

8 supply BW ⇥ inter arrival time⇥ (wi
weffective

)

9 demand pkt.size
10 sm token sm token+ supply � demand
11 sm token min (sm token,MTU)

Ideal Approach

Imagine a scenario where weighted fair queuing [131] is applied for QoS purposes. Then, Bolt would

need to be able to increment the supply token value based on the weight associated with the QoS

level (wi) and the link capacity (C) as well as the demand for each QoS level. For example, when all

QoS levels have at least 1 packet in their queue, a packet arriving at QoS level i should increment

the token value by C ⇥ wi ⇥ tinter�arr. Where
P

8i wi = 1 and tinter�arr is the time between the

arrival of the most recent packet and the previous one on the associated QoS queue.

If a QoS queue is empty, its weight is distributed to other QoS levels in proportion to each level’s

own weight. Therefore, Bolt should adjust the supply token value of QoS level i based on the logic

presented in Algorithm 10.

Note that in order to be able to determine the service rate of each queue, queue occupancy of

other queues would be required. This requirement creates a challenge for P4 switches since only one

queue’s occupancy can be read at a time. A workaround to this would be to create shadow register

arrays for each priority queue where they get updated whenever a value is not being read from them.

Moreover, the calculation at line 8 of Algorithm 10 requires floating point arithmetic which could

be addressed via lookup tables.

Heuristic Approach

A simpler mechanism to enable QoS on Bolt switches would be to introduce probabilistic SRC

generation where higher priority tra�c has a lower probability of generating an SRC packet. This

would naturally keep the rates of high-priority flows high while throttling others. Yet, an extensive

CHAPTER 4. SUB-RTT CONGESTION CONTROL FOR LOWER NETWORK LATENCY 83

empirical study would be required to determine the probabilities such that the queuing for all the

QoS levels is bounded to some extent. Given that Bolt aims to minimize tail queuing in the network,

introducing probabilistic behavior into its design may not be a preferable strategy. Any trade-o↵

between deterministic congestion mitigation and QoS is left to network operators’ discretion if such

a heuristic approach is pursued.

4.6.3 Approximating SRC Overhead

Bolt switches generate SRC packets for every data packet they receive as long as there is queuing,

given that the data packet is not marked with the DEC flag. Then the number of SRC packets in

the network depends on how long queuing persisted and how many packets are received in this time

interval.

At a steady state where no new RPCs join the network, one can estimate the fraction of time

queuing persists on a bottleneck. Congestion at this regime happens only due to the once-per-RTT

additive increase of 1 by each flow.

As described in §4.3.1, senders pace cwnd decrements such that the total number of decrements

equals the queue occupancy after 1 rttsrc. This implies that any queuing will persist for 1 rttsrc,

but will be completely drained after. Since new congestion is not inflicted until the next RTT, the

fraction of time that the switch has non-zero queuing is governed by the following golden ratio:

fraction of time switch is congested =
rttsrc
rtt

(4.1)

which is always less than 1.

Note that equation 4.1 is an approximation for congestion interval since it doesn’t incorporate

tra�c load, new RPC arrivals, or multi-bottleneck scenarios. Nonetheless, one can calculate the

number of SRC packets generated at a bottleneck with it.

of SRC pkts = # of DATA pkts⇥ rttsrc
rtt

(4.2)

Finally, equation 4.2 can be mapped to the bandwidth occupied by the SRC packets by incor-

porating the link capacity and the packet sizes:

SRC Bandwidth = C ⇥ psrc
pdata

⇥ rttsrc
rtt

(4.3)

CHAPTER 4. SUB-RTT CONGESTION CONTROL FOR LOWER NETWORK LATENCY 84

Sender #0

Sender #1

Sender #N

Receiver

Bottleneck
Switch

Figure 4.19: Simplified network topology for the theoretical analysis.

Where C is the rate at which the tra�c is flowing through the bottleneck link, psrc is the size of

SRC packets, and pdata is the size of data packets, i.e., MTU.

The bandwidth of SRC packets calculated according to equation 4.3 for the simulation in §4.5.2

is 0.37Gb/s which is within 12% of the simulation result of 0.33Gb/s. Moreover, equation 4.3 gives

0.10Gb/s for the lab setup in §4.5.5 which is within 23% of the measured value of 0.13Gb/s.

4.6.4 Bu↵er Sizing Analysis for Sub-RTT Control

Figure 4.2 shows that a reduced signaling delay such as the sub-RTT feedback primarily helps to

minimize queuing in the network as it would allow senders to detect and react to congestion much

earlier, i.e., before a large queue builds up. Therefore, I askWhat is the minimum bu↵er size a switch

should have given a feedback delay such that it can tolerate a congestion event without dropping any

packets? To explore a theoretical boundary to this question, I will assume optimal flow control and

congestion control algorithms that set the transmission rate or cwnd to the fair share immediately

after receiving the first Congestion Notification (CN) after pausing an ideal amount of time to drain

the existing congestion.

Imagine the topology in Figure 4.19 where N+1 flows are running through the same bottleneck

switch towards the receiver. Note that this topology is not necessarily a two-hop star topology. Plus,

the bottleneck switch does not need to be the last hop for this analysis. The links shown in the

figure abstract away all the other networking elements and model them as a single link since they

do not mandate flow’s transmission rate or cwnd.

Define the following:

• C: Bottleneck link capacity (i.e., bits per second)

CHAPTER 4. SUB-RTT CONGESTION CONTROL FOR LOWER NETWORK LATENCY 85

• tpre: Propagation delay between the senders and the bottleneck switch. Every flow may have

a di↵erent delay to the bottleneck switch, but only the largest among senders is considered for

the worst-case analysis.

• tpost: Propagation delay between the bottleneck switch and the receiver.

• ts: The serialization delay of an MTU size packet. (i.e., ts = MTU/C) The control packets

are assumed to have zero serialization delay.

• rtt = 2tpre + 2tpost + 2ts.

• rttsrc = 2tpre + ts.

• k: The minimum number of packets in a bu↵er to trigger a CN (i.e., k = CCTHRESH/MTU).

Let’s start with a simple scenario and progressively generalize the case.

2 Flow Congestion

Suppose Sender#0 is at a steady state, transmitting at the line rate without queuing at the bottle-

neck. At t = 0, Sender#1 starts at the line rate.

The first CN will be generated when the kth packet of Sender#1 arrives at the switch. Without

BTS, the CN is reflected by the receiver with ACK packets after waiting in the queue first, i.e.,

one-way-delay (OWD) for OnRamp [108]. Therefore the first CN will be observed by a sender at

t = 2tpre + 2k ⇥ ts + 2tpost. Even if the senders immediately decrease their rate or cwnd to the new

fair share, all the packets Sender#1 has sent so far are going to create queuing at the bottleneck

switch. The size of the bu↵er required to accommodate all these packets, Back, can be calculated

as:

Back = C ⇥ (2tpre + 2k ⇥ ts + 2tpost) (4.4)

In the case of Sub-RTT control, the sender will receive the first CN at t = 2tpre+k⇥ts. Therefore,

the required amount of bu↵er for accommodating the congestion becomes

Bsrc = C ⇥ (2tpre + k ⇥ ts) (4.5)

Note that Bsrc < Back and the saving for bu↵er space is C⇥(2tpost+k⇥ts). For a scenario where

C = 100Gb/s, tpre = 4µs, tpost = 1µs, k = 1, and MTU = 4000B, this saving is 29KB or 2.32µs of

CHAPTER 4. SUB-RTT CONGESTION CONTROL FOR LOWER NETWORK LATENCY 86

unnecessary queuing which corresponds to 21.8% reduction in the maximum congestion. Note that

this saving increases when a larger value of k is used. For example, as discussed in §4.6.1, network

owners may choose to use a higher CCTHRESH for tolerating the batching behavior of sender NICs.

When k is set to 16 packets, the bu↵er utilization savings increase to 89KB or 7.12µs.

N Flow Incast

This time, suppose N > k additional flows start at the line rate at t = 0 while Sender#0 is at a

steady state. Then the first CN would be emitted by the switch when the first packets of each sender

arrive at the bottleneck switch which will be observed by the senders at t = 2tpre + ts. Then,

Bincast = N ⇥ C ⇥ (2tpre + ts) = N ⇥ C ⇥ rttsrc (4.6)

Without Sub-RTT control, the first CN would be delivered to one of the senders at t = rtt

whereas other senders would receive a CN later depending on the order in which their data packets

arrive at the congested queue, which implies that Back > N ⇥ C ⇥ rtt. Therefore, the bu↵er space

required without Sub-RTT control would be more than rtt

rttsrc
times higher compared to the use of

SRC packets. Note that this is the reciprocal of the golden ratio introduced in §4.6.3, and it is

calculated as 1.28 for the numerical example given previously. This implies 21.8% bu↵er savings

with Sub-RTT control compared to traditional RTT-based control loops.

Chapter 5

Conclusions

5.1 Dissertation Takeaways

Cloud and data center applications are gaining more adoption in daily tasks. To accommodate

this increasing demand, they are developed in a more distributed fashion for scalability and with

more stringent requirements from the infrastructure to keep up. These requirements include high

bandwidth, which is addressed by deploying higher-capacity links in the network. However, there

is mostly ultra-low latency requirement as well. This requirement necessitates more sophisticated

solutions than just deploying more infrastructure. In particular, the tail latency has become the

determining factor of performance for many applications and larger scales of applications inherently

make it harder to achieve lower tail latencies.

This dissertation focuses on two locations in data centers that can impact the tail latency for the

applications: (I) The end-host; How the incoming and outgoing packets are processed determines

how fast the data can be emitted or delivered from/to the applications. (II) The network; How

the network resources are allocated determines how much queuing the packets experience while

traveling over the network. The first takeaway is that the latency must be minimized both at

the end-host and the network to reduce overall tail latency.

In Chapter 2, I laid out the existing literature on low-latency architectures and algorithms.

On the end-host side, o↵-loading the networking stack onto hardware is the best alternative to

eliminate non-deterministic latencies and support the ever-increasing line rates. Yet, despite decades

of research, the community has not identified a single transport protocol that performs the best for

every edge case – there is no one-size-fits-all. The innovation continues with newer congestion signals

87

CHAPTER 5. CONCLUSIONS 88

and control algorithms for further lowering the network latencies.

Then, I asked “Is there a physical limit to how much we can reduce the tail latency in a data

center?” and more importantly, “How can we reach there?” My answers to these questions are

presented in Chapter 3 and Chapter 4.

In Chapter 3, I presented nanoTransport, which o✏oads the transport layer into pipelined NIC

hardware to achieve the lowest possible packet processing latency while running at the line rate. It

adopts a one-way reliable message delivery interface that supplies ready-to-use messages to CPU

cores or an RDMA engine with orders of magnitude lower tail latencies. At the same time, nan-

oTransport utilizes a P4 programmable NIC architecture that allows data plane programmers to

implement their choice of transport protocols on hardware. The key takeaway from this work is that

it is possible to build a very high throughput (200Gb/s) NIC, with a transport layer

that is very low latency (11ns round-trip), yet is programmable to ease innovation.

Finally, in Chapter 4, I presented Bolt, which studies how to minimize tail latencies in the network

with a faster and more accurate congestion signal. First, it uses the most granular congestion signal,

i.e., precise queue occupancy, for a per-packet decision logic. Second, it minimizes the control

loop delay to its absolute minimum by generating feedback at the congested switches and sending

them directly back to the senders. Third, it hides the control loop delay by making proactive

decisions about foreseeable flow completions. As a result, cwnd is calculated as accurately and

quickly as possible, achieving more than 80% reduction in tail latency and 3⇥ improvement in tail

FCT compared to the production algorithms of Google and Alibaba. The key takeaway from this

work is that sub-RTT and precise congestion feedback – along with proactive decision-

making – is the key to fast and accurate congestion control in highly dynamic data

center environments. Fortunately, the flexibility provided by programmable switches enables

easier prototyping for such algorithms, hopefully inspiring fixed-function ASIC designers to support

such timely and accurate signals in their products in the future.

5.2 Future Directions

Given that nanoTransport reduces packet processing latency to hardware limits at the end-hosts

and Bolt reduces feedback loop delay to its absolute minimum in the network, can we say we are

done with the transport layer latency problem in data centers? The answer to this question is a big

no.

The network topologies, link capacities, hardware technologies, available compute resources, and

CHAPTER 5. CONCLUSIONS 89

the scale of data centers are changing rapidly and are likely to continue changing in the future. Each

of these factors potentially a↵ects the optimal transport protocol and congestion control algorithm

for a data center.

For example, as the available memory size and the speed to read/write to/from this

memory increases in a switch, keeping per-flow state might become feasible even for core data

center switches. Then, revisiting solutions like BFC [51] for large-scale deployments would be more

promising.

Another emerging trend is the use of optical circuit switching in data centers [105]. It

essentially forms a slow-moving circuit switch where the mirrors in the network’s core are reconfigured

rather seldom to provision direct optic links for the duration of a job, or to provision capacity to a

whole cluster. This type of switching avoids many dynamics of packet switching networks such as

switch bu↵ering and in-network packet losses, achieving close to zero fiber-to-fiber latency. Moreover,

it has the benefit of consuming much less energy than an electronic packet switch. Hence, the optimal

congestion control, flow control, or scheduling logic will need to be reexamined for such environments

in the future.

In addition to changing networking and hardware production technologies, the applications

and their networking requirements also keep evolving. For example, distributed machine

learning training and inference has recently become one of the most popular applications in mod-

ern data centers. The communication pattern and the user behavior for such machine learning

applications are unique and require special protocols and algorithms to perform well in constrained

environments. In particular, high bandwidth and low packet loss rate are the most prominent

networking requirements, instead of low tail latency, for the training tasks.

To comply with the unique requirements of ML models, the community has been training models

mainly on Infiniband-based networks. Even then, networking is considered the bottleneck for such

tasks, and community e↵ort for transport protocols with linear scale-out is needed [171]. However,

the proprietary nature of Infiniband makes infrastructure scaling slower while also making it more

di�cult to innovate on the existing infrastructure. Hence, there is likely going to be a desire to

transition to Ethernet environments, which will open up many opportunities to explore custom

transport protocols that can satisfy the specific requirements of various ML tasks while being friendly

to other low-latency applications in the data center.

Obviously, optimizing the data center transport layer only for ML applications would not be wise.

Many other applications are also mission-critical for many data centers, e.g., distributed storage or

CHAPTER 5. CONCLUSIONS 90

financial trading. Since the networking requirements of these applications are likely di↵erent from

each other, being able to adapt to the dynamic requirements of any application in real-

time plays a significant role in making sure the performance is optimized.

For example, an application that does not require its RPC request to return until some other

computation finishes locally could inform the transport protocol, so that the transport protocol would

prioritize other flows for improved overall user experience. Such a capability will likely require a

smarter interface between the applications and the transport layer. Designing this interface for wide

adoption remains to be an interesting future work.

On the other hand, the latency requirements of algorithmic trading have pushed the financial

industry toward a completely di↵erent approach. Even the nanoseconds spent for packet processing

at the NICs and switches can not be accepted when competing against other traders. Hence,

switching and routing are handled in the physical layer [86], which makes the transport layer invisible

to the network. Then, one would need to reexamine how congestion is signaled while scaling up the

trading system with such a limited budget for packet processing times.

Finally, the energy consumption of data centers increases in parallel with the rising popularity of

online applications. The electricity usage of these facilities is estimated to be approximately 3% of

the global consumption [59], a figure projected to rise significantly in the future [7, 63]. Therefore,

any improvement in the energy e�ciency of communications will be beneficial – both en-

vironmentally, and financially for network owners. In this regard, I value exploring how congestion

control, in particular, a↵ects the energy footprint of data centers as a starting point. In a preliminary

work, I showed that energy e�ciency can be increased when congestion control algorithms approxi-

mate the Shortest Remaining Processing Time First paradigm as opposed to fair resource allocation

per-flow [9]. This result suggests that we as a community should rethink our current approach to

congestion control and potentially more for substantial savings and environmental impact.

5.3 Concluding Remarks

We are still in the early days of cloud computing. The slowing of Moore’s Law and Dennard Scaling

means single-core performance is leveling o↵. New applications must be distributed across an ever-

increasing number of cores. Cloud service providers and their customers are still learning how to

develop large, and fast distributed applications that perform well on a shared infrastructure. This

trend is helped by steadily increasing network speeds. Server NICs have transitioned quickly from

10Gb/s to 25Gb/s, 100Gb/s, and now 400Gb/s. However, the benefits of “many cores and a fast

CHAPTER 5. CONCLUSIONS 91

network” are often lost because of an ine�cient NIC design, or software in the network stack.

It is therefore natural to consider o✏oading the transport layer into pipelined NIC hardware

which runs at the line rate with very low latency. Despite the performance benefits of such hardware

– i.e., higher line rates, lower latencies, and lower energy footprint – baking a particular logic on the

hardware fixes it for many years in production. Yet, the network topologies, tra�c patterns, flow

sizes, performance metrics, and performance requirements constantly evolve in data centers. One

must keep up with this evolution to extract the best performance out of data centers.

The evolution of data centers is not the enemy of us, the networking and systems people. Instead,

it is an exciting challenge for us to solve interesting and impactful problems. We should rapidly adapt

our tools and techniques to attack this challenge. This thesis demonstrates that this is possible,

without compromising throughput or latency.

Naturally, keeping up with the evolving data centers depends on having the flexibility to program

the stack and deploy tailored protocols in a relatively short period. However, some data center owners

still use fixed-function ASICs. This slows them down to try out new protocols and algorithms mainly

because it takes years to add features to the next generations of hardware and deploy them. On

the other hand, programmable networking equipment, i.e., NICs and switches, can be

deployed once; while the production logic can be modified as frequently as needed.

Given that modern programmable networking equipment is comparable to fixed-function ASICs

in terms of speed, power, and cost, the capability to innovate with rapid prototyping essentially comes

for free. Such programmable equipment is already commercially o↵-the-shelf for packet processing

at high line rates. And some large data center owners have already transitioned to such equipment,

e.g., Mount Evans IPUs at Google, Azure SmartNICs at Microsoft, and Tofino switches at Alibaba.

Hence, it is likely to have all of the networking equipment programmable in the foreseeable future.

Even if this prophecy does not come true in the future, programmability will continue to be

the primary enabler of rapid prototyping and research, especially in determining the

best network behavior for a new workload. Then fixed-function ASIC vendors will be able to

make better proven decisions about which features to support in their products.

Bolt is an excellent example to show how easy innovative prototyping can be with programmable

networking equipment. It is designed by a network owner and an academic researcher but can advise

equipment vendors about what kind of congestion mitigation features should be implemented in

future products. In addition, it suggests that there is great value in enabling network owners

to design and implement their custom designs with programmable architectures.

CHAPTER 5. CONCLUSIONS 92

NanoTransport is just a step in the direction of enabling programmability in dynamic data

centers. Similar SmartNICs are gaining adoption among large data center owners such as Google

and Microsoft. Therefore it is very timely to think about how we can innovate with them to reach the

physical lower bounds of packet processing latency while optimizing the network resource allocations.

It will certainly be very exciting to see how much further such innovations can impact our digital

experience in the future.

Bibliography

[1] Vamsi Addanki, Oliver Michel, and Stefan Schmid. PowerTCP: Pushing the Performance

Limits of Datacenter Networks. In 19th USENIX Symposium on Networked Systems Design

and Implementation (NSDI 22), pages 51–70, Renton, WA, April 2022. USENIX Association.

URL: https://www.usenix.org/conference/nsdi22/presentation/addanki.

[2] Marcos K. Aguilera, Naama Ben-David, Rachid Guerraoui, Virendra J. Marathe, Athanasios

Xygkis, and Igor Zablotchi. Microsecond Consensus for Microsecond Applications. In 14th

USENIX Symposium on Operating Systems Design and Implementation (OSDI 20), pages

599–616. USENIX Association, November 2020. URL: https://www.usenix.org/conference/

osdi20/presentation/aguilera.

[3] F. Akujobi, I. Lambadaris, R. Makkar, N. Seddigh, and B. Nandy. BECN for congestion

control in TCP/IP networks: study and comparative evaluation. In Global Telecommunications

Conference, 2002. GLOBECOM ’02. IEEE, volume 3, pages 2588–2593 vol.3, 2002. doi:

10.1109/GLOCOM.2002.1189098.

[4] Mohammad Alizadeh, Albert Greenberg, David A. Maltz, Jitendra Padhye, Parveen Patel,

Balaji Prabhakar, Sudipta Sengupta, and Murari Sridharan. Data Center TCP (DCTCP).

SIGCOMM Comput. Commun. Rev., 40(4):63–74, August 2010. URL: https://doi-

org.stanford.idm.oclc.org/10.1145/1851275.1851192, doi:10.1145/1851275.1851192.

[5] Mohammad Alizadeh, Abdul Kabbani, Tom Edsall, Balaji Prabhakar, Amin Vahdat, and

Masato Yasuda. Less is More: Trading a Little Bandwidth for Ultra-Low Latency in the Data

Center. In Proceedings of the 9th USENIX Conference on Networked Systems Design and

Implementation, NSDI’12, page 19, USA, 2012. USENIX Association.

93

https://www.usenix.org/conference/nsdi22/presentation/addanki
https://www.usenix.org/conference/osdi20/presentation/aguilera
https://www.usenix.org/conference/osdi20/presentation/aguilera
https://doi.org/10.1109/GLOCOM.2002.1189098
https://doi.org/10.1109/GLOCOM.2002.1189098
https://doi-org.stanford.idm.oclc.org/10.1145/1851275.1851192
https://doi-org.stanford.idm.oclc.org/10.1145/1851275.1851192
https://doi.org/10.1145/1851275.1851192

BIBLIOGRAPHY 94

[6] Mohammad Alizadeh, Shuang Yang, Milad Sharif, Sachin Katti, Nick McKeown, Balaji

Prabhakar, and Scott Shenker. PFabric: Minimal near-Optimal Datacenter Transport.

SIGCOMM Comput. Commun. Rev., 43(4):435–446, August 2013. URL: https://doi-

org.stanford.idm.oclc.org/10.1145/2534169.2486031, doi:10.1145/2534169.2486031.

[7] Anders S. G. Andrae and Tomas Edler. On Global Electricity Usage of Communication Tech-

nology: Trends to 2030. Challenges, 6(1):117–157, 2015. URL: https://www.mdpi.com/2078-

1547/6/1/117, doi:10.3390/challe6010117.

[8] Mina Tahmasbi Arashloo, Alexey Lavrov, Manya Ghobadi, Jennifer Rexford, David Walker,

and David Wentzla↵. Enabling Programmable Transport Protocols in High-Speed NICs.

In 17th USENIX Symposium on Networked Systems Design and Implementation (NSDI

20), pages 93–109, Santa Clara, CA, February 2020. USENIX Association. URL: https:

//www.usenix.org/conference/nsdi20/presentation/arashloo.

[9] Serhat Arslan, Sundararajan Renganathan, and Bruce Spang. Green With Envy: Unfair

Congestion Control Algorithms Can Be More Energy E�cient. In Proceedings of the 22nd

ACM Workshop on Hot Topics in Networks, HotNets ’23, page 220–228, New York, NY, USA,

2023. Association for Computing Machinery. doi:10.1145/3626111.3628200.

[10] Berk Atikoglu, Yuehai Xu, Eitan Frachtenberg, Song Jiang, and Mike Paleczny. Workload

Analysis of a Large-Scale Key-Value Store. In Proceedings of the 12th ACM SIGMET-

RICS/PERFORMANCE Joint International Conference on Measurement and Modeling of

Computer Systems, SIGMETRICS ’12, page 53–64, New York, NY, USA, 2012. Associa-

tion for Computing Machinery. URL: https://doi-org.stanford.idm.oclc.org/10.1145/

2254756.2254766, doi:10.1145/2254756.2254766.

[11] AvidThink and Converge. Myth-busting DPDK in 2020, 2020 [Online]. URL: https://

www.dpdk.org.

[12] Jonathan Bachrach, Huy Vo, Brian Richards, Yunsup Lee, Andrew Waterman, Rimas

Avižienis, John Wawrzynek, and Krste Asanović. Chisel: Constructing hardware in a Scala

embedded language. In DAC Design Automation Conference 2012, pages 1212–1221, New

York, NY, USA, 2012. IEEE, IEEE Press. doi:10.1145/2228360.2228584.

[13] Wei Bai, Li Chen, Kai Chen, Dongsu Han, Chen Tian, and Hao Wang. PIAS: Practical

Information-Agnostic Flow Scheduling for Commodity Data Centers. IEEE/ACM Trans.

https://doi-org.stanford.idm.oclc.org/10.1145/2534169.2486031
https://doi-org.stanford.idm.oclc.org/10.1145/2534169.2486031
https://doi.org/10.1145/2534169.2486031
https://www.mdpi.com/2078-1547/6/1/117
https://www.mdpi.com/2078-1547/6/1/117
https://doi.org/10.3390/challe6010117
https://www.usenix.org/conference/nsdi20/presentation/arashloo
https://www.usenix.org/conference/nsdi20/presentation/arashloo
https://doi.org/10.1145/3626111.3628200
https://doi-org.stanford.idm.oclc.org/10.1145/2254756.2254766
https://doi-org.stanford.idm.oclc.org/10.1145/2254756.2254766
https://doi.org/10.1145/2254756.2254766
https://www.dpdk.org
https://www.dpdk.org
https://doi.org/10.1145/2228360.2228584

BIBLIOGRAPHY 95

Netw., 25(4):1954–1967, August 2017. URL: https://doi-org.stanford.idm.oclc.org/

10.1109/TNET.2017.2669216, doi:10.1109/TNET.2017.2669216.

[14] Luiz Barroso, Mike Marty, David Patterson, and Parthasarathy Ranganathan. Attack of the

Killer Microseconds. Commun. ACM, 60(4):48–54, March 2017. doi:10.1145/3015146.

[15] Luiz Andrè Barroso, Urs Hölzle, and Parthasarathy Ranganathan. The Datacenter as a

Computer: An Introduction to the Design of Warehouse-Scale Machines. Morgan & Clay-

pool Publishers, San Rafael, CA, USA, 3rd edition, October 2018. URL: https://doi-

org.stanford.idm.oclc.org/10.2200/S00874ED3V01Y201809CAC046.

[16] Adam Belay, George Prekas, Ana Klimovic, Samuel Grossman, Christos Kozyrakis, and

Edouard Bugnion. IX: A Protected Dataplane Operating System for High Throughput and

Low Latency. In 11th USENIX Symposium on Operating Systems Design and Implementa-

tion (OSDI 14), pages 49–65, Broomfield, CO, October 2014. USENIX Association. URL:

https://www.usenix.org/conference/osdi14/technical-sessions/presentation/belay.

[17] Ran Ben Basat, Sivaramakrishnan Ramanathan, Yuliang Li, Gianni Antichi, Minian Yu, and

Michael Mitzenmacher. PINT: Probabilistic In-Band Network Telemetry. In Proceedings of

the Annual Conference of the ACM Special Interest Group on Data Communication on the

Applications, Technologies, Architectures, and Protocols for Computer Communication, SIG-

COMM ’20, page 662–680, New York, NY, USA, 2020. Association for Computing Machinery.

doi:10.1145/3387514.3405894.

[18] Tanya Bhatia. UADP - The Powerhouse of Catalyst 9000 Family. Cisco Systems Inc., December

2018. URL: https://community.cisco.com/t5/networking-blogs/uadp-the-powerhouse-

of-catalyst-9000-family/ba-p/3764605.

[19] Ethan Blanton, Dr. Vern Paxson, and Mark Allman. TCP Congestion Control. RFC 5681,

September 2009. URL: https://rfc-editor.org/rfc/rfc5681.txt, doi:10.17487/RFC5681.

[20] Pat Bosshart, Glen Gibb, Hun-Seok Kim, George Varghese, Nick McKeown, Martin Izzard,

Fernando Mujica, and Mark Horowitz. Forwarding Metamorphosis: Fast Programmable

Match-Action Processing in Hardware for SDN. In Proceedings of the ACM SIGCOMM 2013

Conference on SIGCOMM, SIGCOMM ’13, page 99–110, New York, NY, USA, 2013. Asso-

ciation for Computing Machinery. URL: https://doi-org.stanford.idm.oclc.org/10.1145/

2486001.2486011, doi:10.1145/2486001.2486011.

https://doi-org.stanford.idm.oclc.org/10.1109/TNET.2017.2669216
https://doi-org.stanford.idm.oclc.org/10.1109/TNET.2017.2669216
https://doi.org/10.1109/TNET.2017.2669216
https://doi.org/10.1145/3015146
https://doi-org.stanford.idm.oclc.org/10.2200/S00874ED3V01Y201809CAC046
https://doi-org.stanford.idm.oclc.org/10.2200/S00874ED3V01Y201809CAC046
https://www.usenix.org/conference/osdi14/technical-sessions/presentation/belay
https://doi.org/10.1145/3387514.3405894
https://community.cisco.com/t5/networking-blogs/uadp-the-powerhouse-of-catalyst-9000-family/ba-p/3764605
https://community.cisco.com/t5/networking-blogs/uadp-the-powerhouse-of-catalyst-9000-family/ba-p/3764605
https://rfc-editor.org/rfc/rfc5681.txt
https://doi.org/10.17487/RFC5681
https://doi-org.stanford.idm.oclc.org/10.1145/2486001.2486011
https://doi-org.stanford.idm.oclc.org/10.1145/2486001.2486011
https://doi.org/10.1145/2486001.2486011

BIBLIOGRAPHY 96

[21] Lawrence S. Brakmo, Sean W. O’Malley, and Larry L. Peterson. TCP Vegas: New Techniques

for Congestion Detection and Avoidance. In Proceedings of the Conference on Communications

Architectures, Protocols and Applications, SIGCOMM ’94, page 24–35, New York, NY, USA,

1994. Association for Computing Machinery. doi:10.1145/190314.190317.

[22] Rory Browne, Andrey Chilikin, and Tal Mizrahi. Key Performance Indicator (KPI) Stamp-

ing for the Network Service Header (NSH). RFC 8592, May 2019. URL: https://rfc-

editor.org/rfc/rfc8592.txt, doi:10.17487/RFC8592.

[23] Mihai Budiu and Chris Dodd. The P4-16 Programming Language. SIGOPS Oper. Syst.

Rev., 51(1):5–14, September 2017. URL: https://doi-org.stanford.idm.oclc.org/10.1145/

3139645.3139648, doi:10.1145/3139645.3139648.

[24] Qizhe Cai, Shubham Chaudhary, Midhul Vuppalapati, Jaehyun Hwang, and Rachit Agarwal.

Understanding host network stack overheads. In Proceedings of the 2021 ACM SIGCOMM

2021 Conference, SIGCOMM ’21, page 65–77, New York, NY, USA, 2021. Association for

Computing Machinery. doi:10.1145/3452296.3472888.

[25] Neal Cardwell, Yuchung Cheng, C. Stephen Gunn, Soheil Hassas Yeganeh, and Van Jacobson.

BBR: Congestion-based Congestion Control. Commun. ACM, 60(2):58–66, January 2017.

URL: http://doi.acm.org/10.1145/3009824, doi:10.1145/3009824.

[26] V. Cerf and R. Kahn. A Protocol for Packet Network Intercommunication. IEEE Transactions

on Communications, 22(5):637–648, 1974. doi:10.1109/TCOM.1974.1092259.

[27] The Networking Channel. Network Programmability: The Road Ahead, Jul 2023. URL:

https://www.youtube.com/watch?v=CtxfmES4T7E.

[28] Cheng Chen, Jun Yang, Mian Lu, Taize Wang, Zhao Zheng, Yuqiang Chen, Wenyuan Dai,

Bingsheng He, Weng-Fai Wong, Guoan Wu, Yuping Zhao, and Andy Rudo↵. Optimizing

in-memory database engine for AI-powered on-line decision augmentation using persistent

memory. Proc. VLDB Endow., 14(5):799–812, jan 2021. doi:10.14778/3446095.3446102.

[29] Inho Cho, Keon Jang, and Dongsu Han. Credit-Scheduled Delay-Bounded Congestion Con-

trol for Datacenters. In Proceedings of the Conference of the ACM Special Interest Group

on Data Communication, SIGCOMM ’17, page 239–252, New York, NY, USA, 2017. Asso-

ciation for Computing Machinery. URL: https://doi-org.stanford.idm.oclc.org/10.1145/

3098822.3098840, doi:10.1145/3098822.3098840.

https://doi.org/10.1145/190314.190317
https://rfc-editor.org/rfc/rfc8592.txt
https://rfc-editor.org/rfc/rfc8592.txt
https://doi.org/10.17487/RFC8592
https://doi-org.stanford.idm.oclc.org/10.1145/3139645.3139648
https://doi-org.stanford.idm.oclc.org/10.1145/3139645.3139648
https://doi.org/10.1145/3139645.3139648
https://doi.org/10.1145/3452296.3472888
http://doi.acm.org/10.1145/3009824
https://doi.org/10.1145/3009824
https://doi.org/10.1109/TCOM.1974.1092259
https://www.youtube.com/watch?v=CtxfmES4T7E
https://doi.org/10.14778/3446095.3446102
https://doi-org.stanford.idm.oclc.org/10.1145/3098822.3098840
https://doi-org.stanford.idm.oclc.org/10.1145/3098822.3098840
https://doi.org/10.1145/3098822.3098840

BIBLIOGRAPHY 97

[30] Inho Cho, Ahmed Saeed, Joshua Fried, Seo Jin Park, Mohammad Alizadeh, and Adam Belay.

Overload control for µs-scale RPCs with breakwater. In 14th USENIX Symposium on Oper-

ating Systems Design and Implementation (OSDI 20), pages 299–314. USENIX Association,

November 2020. URL: https://www.usenix.org/conference/osdi20/presentation/cho.

[31] Jerry Chu, Nandita Dukkipati, Yuchung Cheng, and Matt Mathis. Increasing TCP’s Initial

Window. RFC 6928, April 2013. URL: https://rfc-editor.org/rfc/rfc6928.txt, doi:

10.17487/RFC6928.

[32] Cisco. Nexus SmartNIC, May 2021 [Online]. URL: https://www.cisco.com/c/en/us/

products/interfaces-modules/nexus-smartnic/index.html.

[33] D. Clark. The Design Philosophy of the DARPA Internet Protocols. In Symposium Pro-

ceedings on Communications Architectures and Protocols, SIGCOMM ’88, pages 106–114,

New York, NY, USA, 1988. ACM. URL: http://doi.acm.org/10.1145/52324.52336, doi:

10.1145/52324.52336.

[34] Intel Corporation. Comparing FPGAs, Structured ASICs, and Cell-Based ASICs.

https://www.intel.com/content/www/us/en/products/programmable/fpga-vs-

structured-asic.html, 2021. Accessed on 2021-05-09.

[35] Intel Corporation. Tofino 2: Second-generation P4-programmable Ethernet switch

ASIC that continues to deliver programmability without compromise, May 2021.

URL: https://www.intel.com/content/www/us/en/products/network-io/programmable-

ethernet-switch/tofino-2-series.html.

[36] Alpha Data. ADM-PCIE-9V3, April 2019 [Online]. URL: https://www.alpha-data.com/

pdfs/adm-pcie-9v3.pdf.

[37] J.D. Day and H. Zimmermann. The OSI reference model. Proceedings of the IEEE,

71(12):1334–1340, 1983. doi:10.1109/PROC.1983.12775.

[38] Je↵rey Dean and Luiz André Barroso. The Tail at Scale. Communications of the ACM, 56:74–

80, 2013. URL: http://cacm.acm.org/magazines/2013/2/160173-the-tail-at-scale/

fulltext.

https://www.usenix.org/conference/osdi20/presentation/cho
https://rfc-editor.org/rfc/rfc6928.txt
https://doi.org/10.17487/RFC6928
https://doi.org/10.17487/RFC6928
https://www.cisco.com/c/en/us/products/interfaces-modules/nexus-smartnic/index.html
https://www.cisco.com/c/en/us/products/interfaces-modules/nexus-smartnic/index.html
http://doi.acm.org/10.1145/52324.52336
https://doi.org/10.1145/52324.52336
https://doi.org/10.1145/52324.52336
https://www.intel.com/content/www/us/en/products/programmable/fpga-vs-structured-asic.html
https://www.intel.com/content/www/us/en/products/programmable/fpga-vs-structured-asic.html
https://www.intel.com/content/www/us/en/products/network-io/programmable-ethernet-switch/tofino-2-series.html
https://www.intel.com/content/www/us/en/products/network-io/programmable-ethernet-switch/tofino-2-series.html
https://www.alpha-data.com/pdfs/adm-pcie-9v3.pdf
https://www.alpha-data.com/pdfs/adm-pcie-9v3.pdf
https://doi.org/10.1109/PROC.1983.12775
http://cacm.acm.org/magazines/2013/2/160173-the-tail-at-scale/fulltext
http://cacm.acm.org/magazines/2013/2/160173-the-tail-at-scale/fulltext

BIBLIOGRAPHY 98

[39] Henri Maxime Demoulin, Joshua Fried, Isaac Pedisich, Marios Kogias, Boon Thau Loo, Linh

Thi Xuan Phan, and Irene Zhang. When Idling is Ideal: Optimizing Tail-Latency for Heavy-

Tailed Datacenter Workloads with Perséphone. In Proceedings of the ACM SIGOPS 28th

Symposium on Operating Systems Principles, SOSP ’21, page 621–637, New York, NY, USA,

2021. Association for Computing Machinery. doi:10.1145/3477132.3483571.

[40] Li Ding, Ping Kang, Wenbo Yin, and Linli Wang. Hardware TCP O✏oad Engine based on 10-

Gbps Ethernet for low-latency network communication. In 2016 International Conference on

Field-Programmable Technology (FPT), pages 269–272, 2016. doi:10.1109/FPT.2016.7929550.

[41] Ryan Doenges, Mina Tahmasbi Arashloo, Santiago Bautista, Alexander Chang, Newton Ni,

Samwise Parkinson, Rudy Peterson, Alaia Solko-Breslin, Amanda Xu, and Nate Foster. Petr4:

formal foundations for p4 data planes. Proc. ACM Program. Lang., 5(POPL), jan 2021.

doi:10.1145/3434322.

[42] Nandita Dukkipati. Rate Control Protocol (Rcp): Congestion Control to Make Flows Complete

Quickly. PhD thesis, Stanford University, Stanford, CA, USA, 2008. AAI3292347. URL:

https://dl-acm-org.stanford.idm.oclc.org/doi/10.5555/1368746.

[43] Nandita Dukkipati and Nick McKeown. Why Flow-Completion Time is the Right Metric

for Congestion Control. SIGCOMM Comput. Commun. Rev., 36(1):59–62, January 2006.

doi:10.1145/1111322.1111336.

[44] Andy Fingerhut, Radostin Stoyanov, and Nate Foster. Portable NIC Architecture, May

2021 [Online]. URL: https://github.com/p4lang/pna/blob/main/generated-html/PNA-

v0.5.0.pdf.

[45] Daniel Firestone, Andrew Putnam, Sambhrama Mundkur, Derek Chiou, Alireza Dabagh, Mike

Andrewartha, Hari Angepat, Vivek Bhanu, Adrian Caulfield, Eric Chung, Harish Kumar Chan-

drappa, Somesh Chaturmohta, Matt Humphrey, Jack Lavier, Norman Lam, Fengfen Liu, Kalin

Ovtcharov, Jitu Padhye, Gautham Popuri, Shachar Raindel, Tejas Sapre, Mark Shaw, Gabriel

Silva, Madhan Sivakumar, Nisheeth Srivastava, Anshuman Verma, Qasim Zuhair, Deepak

Bansal, Doug Burger, Kushagra Vaid, David A. Maltz, and Albert Greenberg. Azure Accel-

erated Networking: SmartNICs in the Public Cloud. In 15th USENIX Symposium on Net-

worked Systems Design and Implementation (NSDI 18), pages 51–66, Renton, WA, April 2018.

https://doi.org/10.1145/3477132.3483571
https://doi.org/10.1109/FPT.2016.7929550
https://doi.org/10.1145/3434322
https://dl-acm-org.stanford.idm.oclc.org/doi/10.5555/1368746
https://doi.org/10.1145/1111322.1111336
https://github.com/p4lang/pna/blob/main/generated-html/PNA-v0.5.0.pdf
https://github.com/p4lang/pna/blob/main/generated-html/PNA-v0.5.0.pdf

BIBLIOGRAPHY 99

USENIX Association. URL: https://www.usenix.org/conference/nsdi18/presentation/

firestone.

[46] S. Floyd and T. Henderson. The NewReno Modification to TCP’s Fast Recovery Algorithm.

RFC 2582, 1999. URL: https://rfc-editor.org/rfc/rfc2582.txt, doi:10.17487/RFC2582.

[47] Sally Floyd, Dr. K. K. Ramakrishnan, and David L. Black. The Addition of Explicit Congestion

Notification (ECN) to IP. RFC 3168, September 2001. URL: https://rfc-editor.org/rfc/

rfc3168.txt, doi:10.17487/RFC3168.

[48] Doug Freimuth, Elbert Hu, Jason LaVoie, Ronald Mraz, Erich Nahum, Prashant Prad-

han, and John Tracey. Server Network Scalability and TCP O✏oad. In 2005 USENIX

Annual Technical Conference (USENIX ATC 05), Anaheim, CA, April 2005. USENIX As-

sociation. URL: https://www.usenix.org/conference/2005-usenix-annual-technical-

conference/server-network-scalability-and-tcp-offload.

[49] Peter X. Gao, Akshay Narayan, Gautam Kumar, Rachit Agarwal, Sylvia Ratnasamy, and

Scott Shenker. PHost: Distributed near-Optimal Datacenter Transport over Commodity Net-

work Fabric. In Proceedings of the 11th ACM Conference on Emerging Networking Experi-

ments and Technologies, CoNEXT ’15, New York, NY, USA, 2015. Association for Comput-

ing Machinery. URL: https://doi-org.stanford.idm.oclc.org/10.1145/2716281.2836086,

doi:10.1145/2716281.2836086.

[50] Prateesh Goyal, Anup Agarwal, Ravi Netravali, Mohammad Alizadeh, and Hari Balakrish-

nan. ABC: A Simple Explicit Congestion Controller for Wireless Networks. In 17th USENIX

Symposium on Networked Systems Design and Implementation (NSDI 20), pages 353–372,

Santa Clara, CA, February 2020. USENIX Association. URL: https://www.usenix.org/

conference/nsdi20/presentation/goyal.

[51] Prateesh Goyal, Preey Shah, Kevin Zhao, Georgios Nikolaidis, Mohammad Alizadeh, and

Thomas E. Anderson. Backpressure Flow Control. In 19th USENIX Symposium on Networked

Systems Design and Implementation (NSDI 22), pages 779–805, Renton, WA, April 2022.

USENIX Association. URL: https://www.usenix.org/conference/nsdi22/presentation/

goyal.

https://www.usenix.org/conference/nsdi18/presentation/firestone
https://www.usenix.org/conference/nsdi18/presentation/firestone
https://rfc-editor.org/rfc/rfc2582.txt
https://doi.org/10.17487/RFC2582
https://rfc-editor.org/rfc/rfc3168.txt
https://rfc-editor.org/rfc/rfc3168.txt
https://doi.org/10.17487/RFC3168
https://www.usenix.org/conference/2005-usenix-annual-technical-conference/server-network-scalability-and-tcp-offload
https://www.usenix.org/conference/2005-usenix-annual-technical-conference/server-network-scalability-and-tcp-offload
https://doi-org.stanford.idm.oclc.org/10.1145/2716281.2836086
https://doi.org/10.1145/2716281.2836086
https://www.usenix.org/conference/nsdi20/presentation/goyal
https://www.usenix.org/conference/nsdi20/presentation/goyal
https://www.usenix.org/conference/nsdi22/presentation/goyal
https://www.usenix.org/conference/nsdi22/presentation/goyal

BIBLIOGRAPHY 100

[52] Andrei Gurtov, Tom Henderson, Sally Floyd, and Yoshifumi Nishida. The NewReno Mod-

ification to TCP’s Fast Recovery Algorithm. RFC 6582, April 2012. URL: https://rfc-

editor.org/rfc/rfc6582.txt, doi:10.17487/RFC6582.

[53] Dongsu Han, Robert Grandl, Aditya Akella, and Srinivasan Seshan. FCP: A Flexible Transport

Framework for Accommodating Diversity. SIGCOMM Comput. Commun. Rev., 43(4):135–146,

August 2013. doi:10.1145/2534169.2486004.

[54] Mark Handley, Costin Raiciu, Alexandru Agache, Andrei Voinescu, Andrew W. Moore, Gi-

anni Antichi, and Marcin Wójcik. Re-Architecting Datacenter Networks and Stacks for Low

Latency and High Performance. In Proceedings of the Conference of the ACM Special Interest

Group on Data Communication, SIGCOMM ’17, page 29–42, New York, NY, USA, 2017. Asso-

ciation for Computing Machinery. URL: https://doi-org.stanford.idm.oclc.org/10.1145/

3098822.3098825, doi:10.1145/3098822.3098825.

[55] Jörn-Thorben Hinz, Vamsi Addanki, Csaba Györgyi, Theo Jepsen, and Stefan Schmid. TCP’s

Third Eye: Leveraging eBPF for Telemetry-Powered Congestion Control. In Proceedings of

the 1st Workshop on EBPF and Kernel Extensions, eBPF ’23, page 1–7, New York, NY, USA,

2023. Association for Computing Machinery. doi:10.1145/3609021.3609295.

[56] Qinghao Hu, Peng Sun, Shengen Yan, Yonggang Wen, and Tianwei Zhang. Characterization

and prediction of deep learning workloads in large-scale GPU datacenters. In Proceedings

of the International Conference for High Performance Computing, Networking, Storage and

Analysis, SC ’21, New York, NY, USA, 2021. Association for Computing Machinery. doi:

10.1145/3458817.3476223.

[57] Shuihai Hu, Wei Bai, Baochen Qiao, Kai Chen, and Kun Tan. Augmenting Proactive Con-

gestion Control with Aeolus. In Proceedings of the 2nd Asia-Pacific Workshop on Net-

working, APNet ’18, page 22–28, New York, NY, USA, 2018. Association for Comput-

ing Machinery. URL: https://doi-org.stanford.idm.oclc.org/10.1145/3232565.3232567,

doi:10.1145/3232565.3232567.

[58] Jack Tigar Humphries, Kostis Ka↵es, David Mazières, and Christos Kozyrakis. Mind the Gap:

A Case for Informed Request Scheduling at the NIC. In Proceedings of the 18th ACM Work-

shop on Hot Topics in Networks, HotNets ’19, page 60–68, New York, NY, USA, 2019. Asso-

ciation for Computing Machinery. URL: https://doi-org.stanford.idm.oclc.org/10.1145/

https://rfc-editor.org/rfc/rfc6582.txt
https://rfc-editor.org/rfc/rfc6582.txt
https://doi.org/10.17487/RFC6582
https://doi.org/10.1145/2534169.2486004
https://doi-org.stanford.idm.oclc.org/10.1145/3098822.3098825
https://doi-org.stanford.idm.oclc.org/10.1145/3098822.3098825
https://doi.org/10.1145/3098822.3098825
https://doi.org/10.1145/3609021.3609295
https://doi.org/10.1145/3458817.3476223
https://doi.org/10.1145/3458817.3476223
https://doi-org.stanford.idm.oclc.org/10.1145/3232565.3232567
https://doi.org/10.1145/3232565.3232567
https://doi-org.stanford.idm.oclc.org/10.1145/3365609.3365856

BIBLIOGRAPHY 101

3365609.3365856, doi:10.1145/3365609.3365856.

[59] AFL Hyperscale. What Makes Hyperscale, Hyperscale?, March 2023. URL: https://

www.aflhyperscale.com/articles/what-makes-hyperscale-hyperscale/.

[60] Stephen Ibanez, Gianni Antichi, Gordon Brebner, and Nick McKeown. Event-Driven

Packet Processing. In Proceedings of the 18th ACM Workshop on Hot Topics in Net-

works, HotNets ’19, page 133–140, New York, NY, USA, 2019. Association for Comput-

ing Machinery. URL: https://doi-org.stanford.idm.oclc.org/10.1145/3365609.3365848,

doi:10.1145/3365609.3365848.

[61] Stephen Ibanez, Alex Mallery, Serhat Arslan, Theo Jepsen, and Muhammad Shahbaz. nanoPU

GitHub, August 2020 [Online]. URL: https://github.com/l-nic.

[62] Stephen Ibanez, Alex Mallery, Serhat Arslan, Theo Jepsen, Muhammad Shahbaz, Nick McK-

eown, and Changhoon Kim. The nanoPU: A Nanosecond Network Stack for Datacenters.

In 15th USENIX Symposium on Operating Systems Design and Implementation (OSDI 21),

Boston, MA, July 2021. USENIX Association. URL: https://www.usenix.org/conference/

osdi21/presentation/ibanez.

[63] IEA. Data Centres and Data Transmission Networks, Fetched June 25th, 2023. https:

//www.iea.org/reports/data-centres-and-data-transmission-networks.

[64] IEEE. IEEE Standard for Verilog Hardware Description Language. IEEE Std 1364-2005

(Revision of IEEE Std 1364-2001), pages 1–590, 2006. doi:10.1109/IEEESTD.2006.99495.

[65] IEEE. IEEE Standard for Local and Metropolitan Area Networks– Virtual Bridged Local Area

Networks Amendment 13: Congestion Notification. IEEE Std 802.1Qau-2010 (Amendment to

IEEE Std 802.1Q-2005), pages 1–135, 2010. doi:10.1109/IEEESTD.2010.5454063.

[66] IEEE. IEEE Standard for Local and metropolitan area networks–Media Access Con-

trol (MAC) Bridges and Virtual Bridged Local Area Networks–Amendment 17: Priority-

based Flow Control. IEEE Std 802.1Qbb-2011, (Amendment to IEEE Std 802.1Q-2011

as amended by IEEE Std 802.1Qbe-2011 and IEEE Std 802.1Qbc-2011):1–40, 2011. doi:

10.1109/IEEESTD.2011.6032693.

https://doi-org.stanford.idm.oclc.org/10.1145/3365609.3365856
https://doi-org.stanford.idm.oclc.org/10.1145/3365609.3365856
https://doi-org.stanford.idm.oclc.org/10.1145/3365609.3365856
https://doi.org/10.1145/3365609.3365856
https://www.aflhyperscale.com/articles/what-makes-hyperscale-hyperscale/
https://www.aflhyperscale.com/articles/what-makes-hyperscale-hyperscale/
https://doi-org.stanford.idm.oclc.org/10.1145/3365609.3365848
https://doi.org/10.1145/3365609.3365848
https://github.com/l-nic
https://www.usenix.org/conference/osdi21/presentation/ibanez
https://www.usenix.org/conference/osdi21/presentation/ibanez
https://www.iea.org/reports/data-centres-and-data-transmission-networks
https://www.iea.org/reports/data-centres-and-data-transmission-networks
https://doi.org/10.1109/IEEESTD.2006.99495
https://doi.org/10.1109/IEEESTD.2010.5454063
https://doi.org/10.1109/IEEESTD.2011.6032693
https://doi.org/10.1109/IEEESTD.2011.6032693

BIBLIOGRAPHY 102

[67] Broadcom Inc. High-Capacity StrataXGS Trident4 Ethernet Switch Series, May

2021. URL: https://www.broadcom.com/products/ethernet-connectivity/switching/

strataxgs/bcm56880-series.

[68] Google Inc. PSP, March 2022. URL: https://github.com/google/psp.

[69] Versa Technology Inc. 400G Ethernet: It’s Here, and It’s Huge, December 2021. URL:

www.versatek.com/400g-ethernet-its-here-and-its-huge/.

[70] Van Jacobson. Congestion Avoidance and Control. In Symposium Proceedings on Commu-

nications Architectures and Protocols, SIGCOMM ’88, page 314–329, New York, NY, USA,

1988. Association for Computing Machinery. doi:10.1145/52324.52356.

[71] Van Jacobson and Robert Braden. TCP extensions for long-delay paths. RFC 1072, October

1988. URL: https://rfc-editor.org/rfc/rfc1072.txt, doi:10.17487/RFC1072.

[72] Raj Jain, Dah-Ming Chiu, and W. Hawe. A Quantitative Measure Of Fairness And Discrimi-

nation For Resource Allocation In Shared Computer Systems. CoRR, cs.NI/9809099, January

1998. URL: https://arxiv.org/abs/cs/9809099.

[73] EunYoung Jeong, Shinae Wood, Muhammad Jamshed, Haewon Jeong, Sunghwan Ihm, Dongsu

Han, and KyoungSoo Park. mTCP: a Highly Scalable User-level TCP Stack for Multicore

Systems. In 11th USENIX Symposium on Networked Systems Design and Implementation

(NSDI 14), pages 489–502, Seattle, WA, April 2014. USENIX Association. URL: https:

//www.usenix.org/conference/nsdi14/technical-sessions/presentation/jeong.

[74] Theo Jepsen, Daniel Alvarez, Nate Foster, Changhoon Kim, Jeongkeun Lee, Masoud Moshref,

and Robert Soulé. Fast String Searching on PISA. In Proceedings of the 2019 ACM Symposium

on SDN Research, SOSR ’19, page 21–28, New York, NY, USA, 2019. Association for Comput-

ing Machinery. URL: https://doi-org.stanford.idm.oclc.org/10.1145/3314148.3314356,

doi:10.1145/3314148.3314356.

[75] Theo Jepsen, Stephen Ibanez, Gregory Valiant, and Nick McKeown. From Sand to Flour: The

Next Leap in Granular Computing with NanoSort, 2022. arXiv:2204.12615.

[76] Xin Jin, Xiaozhou Li, Haoyu Zhang, Robert Soulé, Jeongkeun Lee, Nate Foster, Changhoon

Kim, and Ion Stoica. NetCache: Balancing Key-Value Stores with Fast In-Network Caching. In

Proceedings of the 26th Symposium on Operating Systems Principles, SOSP ’17, page 121–136,

https://www.broadcom.com/products/ethernet-connectivity/switching/strataxgs/bcm56880-series
https://www.broadcom.com/products/ethernet-connectivity/switching/strataxgs/bcm56880-series
https://github.com/google/psp
www.versatek.com/400g-ethernet-its-here-and-its-huge/
https://doi.org/10.1145/52324.52356
https://rfc-editor.org/rfc/rfc1072.txt
https://doi.org/10.17487/RFC1072
https://arxiv.org/abs/cs/9809099
https://www.usenix.org/conference/nsdi14/technical-sessions/presentation/jeong
https://www.usenix.org/conference/nsdi14/technical-sessions/presentation/jeong
https://doi-org.stanford.idm.oclc.org/10.1145/3314148.3314356
https://doi.org/10.1145/3314148.3314356
http://arxiv.org/abs/2204.12615

BIBLIOGRAPHY 103

New York, NY, USA, 2017. Association for Computing Machinery. URL: https://doi-

org.stanford.idm.oclc.org/10.1145/3132747.3132764, doi:10.1145/3132747.3132764.

[77] Kostis Ka↵es, Timothy Chong, Jack Tigar Humphries, Adam Belay, David Mazières, and

Christos Kozyrakis. Shinjuku: Preemptive Scheduling for microsecond-scale Tail Latency.

In 16th USENIX Symposium on Networked Systems Design and Implementation (NSDI

19), pages 345–360, Boston, MA, February 2019. USENIX Association. URL: https:

//www.usenix.org/conference/nsdi19/presentation/kaffes.

[78] Kostis Ka↵es, Jack Tigar Humphries, David Mazières, and Christos Kozyrakis. Syrup: User-

Defined Scheduling Across the Stack. In Proceedings of the ACM SIGOPS 28th Symposium on

Operating Systems Principles, SOSP ’21, page 605–620, New York, NY, USA, 2021. Association

for Computing Machinery. doi:10.1145/3477132.3483548.

[79] Anuj Kalia, Michael Kaminsky, and David Andersen. Datacenter RPCs can be General

and Fast. In 16th USENIX Symposium on Networked Systems Design and Implementa-

tion (NSDI 19), pages 1–16, Boston, MA, February 2019. USENIX Association. URL:

https://www.usenix.org/conference/nsdi19/presentation/kalia.

[80] Svilen Kanev, Juan Pablo Darago, Kim Hazelwood, Parthasarathy Ranganathan, Tipp Mose-

ley, Gu-Yeon Wei, and David Brooks. Profiling a warehouse-scale computer. SIGARCH

Comput. Archit. News, 43(3S):158–169, jun 2015. doi:10.1145/2872887.2750392.

[81] Sagar Karandikar, Howard Mao, Donggyu Kim, David Biancolin, Alon Amid, Dayeol Lee,

Nathan Pemberton, Emmanuel Amaro, Colin Schmidt, Aditya Chopra, et al. FireSim: FPGA-

accelerated cycle-exact scale-out system simulation in the public cloud. In 2018 ACM/IEEE

45th Annual International Symposium on Computer Architecture (ISCA), pages 29–42, New

York, NY, USA, 2018. IEEE, IEEE Press.

[82] Dina Katabi, Mark Handley, and Charlie Rohrs. Congestion Control for High Bandwidth-Delay

Product Networks. In Proceedings of the 2002 Conference on Applications, Technologies, Ar-

chitectures, and Protocols for Computer Communications, SIGCOMM ’02, page 89–102, New

York, NY, USA, 2002. Association for Computing Machinery. doi:10.1145/633025.633035.

[83] Antoine Kaufmann, Simon Peter, Naveen Kr. Sharma, Thomas Anderson, and Arvind Krishna-

murthy. High Performance Packet Processing with FlexNIC. In Proceedings of the Twenty-First

International Conference on Architectural Support for Programming Languages and Operating

https://doi-org.stanford.idm.oclc.org/10.1145/3132747.3132764
https://doi-org.stanford.idm.oclc.org/10.1145/3132747.3132764
https://doi.org/10.1145/3132747.3132764
https://www.usenix.org/conference/nsdi19/presentation/kaffes
https://www.usenix.org/conference/nsdi19/presentation/kaffes
https://doi.org/10.1145/3477132.3483548
https://www.usenix.org/conference/nsdi19/presentation/kalia
https://doi.org/10.1145/2872887.2750392
https://doi.org/10.1145/633025.633035

BIBLIOGRAPHY 104

Systems, ASPLOS ’16, page 67–81, New York, NY, USA, 2016. Association for Comput-

ing Machinery. URL: https://doi-org.stanford.idm.oclc.org/10.1145/2872362.2872367,

doi:10.1145/2872362.2872367.

[84] Antoine Kaufmann, Tim Stamler, Simon Peter, Naveen Kr. Sharma, Arvind Krishnamurthy,

and Thomas Anderson. TAS: TCP Acceleration as an OS Service. In Proceedings of the

Fourteenth EuroSys Conference 2019, EuroSys ’19, New York, NY, USA, 2019. Association

for Computing Machinery. doi:10.1145/3302424.3303985.

[85] Stephen Kent. IP Encapsulating Security Payload (ESP). RFC 4303, December 2005. URL:

https://www.rfc-editor.org/info/rfc4303, doi:10.17487/RFC4303.

[86] Zeus Kerravala. Arista Launches Low Latency Switches Aimed at Financial Sector. Technolo-

gyAdvice, June 2022 [Online]. URL: https://www.eweek.com/cloud/arista-low-latency-

switches/.

[87] Michael Kerrisk. send(2) — Linux manual page, March 2021. URL: https://man7.org/

linux/man-pages/man2/send.2.html.

[88] Changhoon Kim, Parag Bhide, Ed Doe, Hugh Holbrook, Anoop Ghanwani, Dan Daly, Mukesh

Hira, and Bruce Davie. Inband Network Telemetry (INT), 2016. URL: https://p4.org/

assets/INT-current-spec.pdf.

[89] Hyong-youb Kim and Scott Rixner. Connection hando↵ policies for TCP o✏oad network

interfaces. In Proceedings of the 7th USENIX Symposium on Operating Systems Design and

Implementation - Volume 7, OSDI ’06, page 21, USA, 2006. USENIX Association.

[90] Marios Kogias, George Prekas, Adrien Ghosn, Jonas Fietz, and Edouard Bugnion. R2P2:

Making RPCs first-class datacenter citizens. In 2019 USENIX Annual Technical Conference

(USENIX ATC 19), pages 863–880, Renton, WA, July 2019. USENIX Association. URL:

https://www.usenix.org/conference/atc19/presentation/kogias-r2p2.

[91] Gautam Kumar, Nandita Dukkipati, Keon Jang, Hassan M. G. Wassel, Xian Wu, Behnam

Montazeri, Yaogong Wang, Kevin Springborn, Christopher Alfeld, Michael Ryan, David

Wetherall, and Amin Vahdat. Swift: Delay is Simple and E↵ective for Congestion Control in

the Datacenter. In Proceedings of the Annual Conference of the ACM Special Interest Group

on Data Communication on the Applications, Technologies, Architectures, and Protocols for

https://doi-org.stanford.idm.oclc.org/10.1145/2872362.2872367
https://doi.org/10.1145/2872362.2872367
https://doi.org/10.1145/3302424.3303985
https://www.rfc-editor.org/info/rfc4303
https://doi.org/10.17487/RFC4303
https://www.eweek.com/cloud/arista-low-latency-switches/
https://www.eweek.com/cloud/arista-low-latency-switches/
https://man7.org/linux/man-pages/man2/send.2.html
https://man7.org/linux/man-pages/man2/send.2.html
https://p4.org/assets/INT-current-spec.pdf
https://p4.org/assets/INT-current-spec.pdf
https://www.usenix.org/conference/atc19/presentation/kogias-r2p2

BIBLIOGRAPHY 105

Computer Communication, SIGCOMM ’20, page 514–528, New York, NY, USA, 2020. Asso-

ciation for Computing Machinery. URL: https://doi-org.stanford.idm.oclc.org/10.1145/

3387514.3406591, doi:10.1145/3387514.3406591.

[92] Shiv Kumar, Pravein Govindan Kannan, Ran Ben Basat, Rachel Everman, Amedeo Sapio,

Tom Barbette, and Joeri de Ruiter. Open Tofino, July 2021. URL: https://github.com/

barefootnetworks/Open-Tofino.

[93] Nikita Lazarev, Shaojie Xiang, Neil Adit, Zhiru Zhang, and Christina Delimitrou. Dagger:

e�cient and fast RPCs in cloud microservices with near-memory reconfigurable NICs. In Pro-

ceedings of the 26th ACM International Conference on Architectural Support for Programming

Languages and Operating Systems, ASPLOS ’21, page 36–51, New York, NY, USA, 2021.

Association for Computing Machinery. doi:10.1145/3445814.3446696.

[94] Jeongkeun Lee, Jeremias Blendin, Yanfang Le, Grzegorz Jereczek, Ashutosh Agrawal, and

Rong Pan. Source Priority Flow Control (SPFC) towards Source Flow Control (SFC),

November 2021. URL: https://datatracker.ietf.org/meeting/112/materials/slides-

112-iccrg-source-priority-flow-control-in-data-centers-00.

[95] Samuel J. Le✏er, Robert S. Fabry, and William N. Joy. A 4.2BSD Interprocess Communication

Primer. Technical report, University of California at Berkeley, USA, 1983.

[96] Konstantin Lepikhov. Source Quench. Atlassian Corporation Pty Ltd., April 2018. URL:

https://wiki.geant.org/display/public/EK/Source+Quench.

[97] Bojie Li, Tianyi Cui, Zibo Wang, Wei Bai, and Lintao Zhang. Socksdirect: datacenter sockets

can be fast and compatible. In Proceedings of the ACM Special Interest Group on Data

Communication, SIGCOMM ’19, page 90–103, New York, NY, USA, 2019. Association for

Computing Machinery. doi:10.1145/3341302.3342071.

[98] Bojie Li, Zhenyuan Ruan, Wencong Xiao, Yuanwei Lu, Yongqiang Xiong, Andrew Put-

nam, Enhong Chen, and Lintao Zhang. KV-Direct: High-Performance In-Memory Key-Value

Store with Programmable NIC. In Proceedings of the 26th Symposium on Operating Systems

Principles, SOSP ’17, page 137–152, New York, NY, USA, 2017. Association for Comput-

ing Machinery. URL: https://doi-org.stanford.idm.oclc.org/10.1145/3132747.3132756,

doi:10.1145/3132747.3132756.

https://doi-org.stanford.idm.oclc.org/10.1145/3387514.3406591
https://doi-org.stanford.idm.oclc.org/10.1145/3387514.3406591
https://doi.org/10.1145/3387514.3406591
https://github.com/barefootnetworks/Open-Tofino
https://github.com/barefootnetworks/Open-Tofino
https://doi.org/10.1145/3445814.3446696
https://datatracker.ietf.org/meeting/112/materials/slides-112-iccrg-source-priority-flow-control-in-data-centers-00
https://datatracker.ietf.org/meeting/112/materials/slides-112-iccrg-source-priority-flow-control-in-data-centers-00
https://wiki.geant.org/display/public/EK/Source+Quench
https://doi.org/10.1145/3341302.3342071
https://doi-org.stanford.idm.oclc.org/10.1145/3132747.3132756
https://doi.org/10.1145/3132747.3132756

BIBLIOGRAPHY 106

[99] Bojie Li, Kun Tan, Layong (Larry) Luo, Yanqing Peng, Renqian Luo, Ningyi Xu, Yongqiang

Xiong, Peng Cheng, and Enhong Chen. ClickNP: Highly Flexible and High Performance Net-

work Processing with Reconfigurable Hardware. In Proceedings of the 2016 ACM SIGCOMM

Conference, SIGCOMM ’16, page 1–14, New York, NY, USA, 2016. Association for Comput-

ing Machinery. URL: https://doi-org.stanford.idm.oclc.org/10.1145/2934872.2934897,

doi:10.1145/2934872.2934897.

[100] Hao Li, Changhao Wu, Guangda Sun, Peng Zhang, Danfeng Shan, Tian Pan, and Chengchen

Hu. Programming Network Stack for Middleboxes with Rubik. In 18th USENIX Sympo-

sium on Networked Systems Design and Implementation (NSDI 21), pages 551–570, Berkeley,

CA, April 2021. USENIX Association. URL: https://www.usenix.org/conference/nsdi21/

presentation/li.

[101] Yuliang Li. Hardware-Software Codesign for High-Performance Cloud Networks. PhD thesis,

Harvard University, 2020. URL: https://nrs.harvard.edu/URN-3:HUL.INSTREPOS:37368976.

[102] Yuliang Li, Rui Miao, Hongqiang Harry Liu, Yan Zhuang, Fei Feng, Lingbo Tang, Zheng

Cao, Ming Zhang, Frank Kelly, Mohammad Alizadeh, and Minlan Yu. HPCC: High Precision

Congestion Control. In Proceedings of the ACM Special Interest Group on Data Commu-

nication, SIGCOMM ’19, page 44–58, New York, NY, USA, 2019. Association for Comput-

ing Machinery. URL: https://doi-org.stanford.idm.oclc.org/10.1145/3341302.3342085,

doi:10.1145/3341302.3342085.

[103] Yuliang Li, Rui Miao, Hongqiang Harry Liu, Yan Zhuang, Fei Feng, Lingbo Tang, Zheng

Cao, Ming Zhang, Frank Kelly, Mohammad Alizadeh, and Minlan Yu. HPCC: High Preci-

sion Congestion Control, December 2021 [Online]. URL: https://hpcc-group.github.io/

results.html.

[104] Jiaxin Lin, Kiran Patel, Brent E. Stephens, Anirudh Sivaraman, and Aditya Akella. PANIC:

A High-Performance Programmable NIC for Multi-tenant Networks. In 14th USENIX Sym-

posium on Operating Systems Design and Implementation (OSDI 20), pages 243–259, Boston,

MA, November 2020. USENIX Association. URL: https://www.usenix.org/conference/

osdi20/presentation/lin.

https://doi-org.stanford.idm.oclc.org/10.1145/2934872.2934897
https://doi.org/10.1145/2934872.2934897
https://www.usenix.org/conference/nsdi21/presentation/li
https://www.usenix.org/conference/nsdi21/presentation/li
https://nrs.harvard.edu/URN-3:HUL.INSTREPOS:37368976
https://doi-org.stanford.idm.oclc.org/10.1145/3341302.3342085
https://doi.org/10.1145/3341302.3342085
https://hpcc-group.github.io/results.html
https://hpcc-group.github.io/results.html
https://www.usenix.org/conference/osdi20/presentation/lin
https://www.usenix.org/conference/osdi20/presentation/lin

BIBLIOGRAPHY 107

[105] Hong Liu, Ryohei Urata, Kevin Yasumura, Xiang Zhou, Roy Bannon, Jill Berger, Pedram

Dashti, Norm Jouppi, Cedric Lam, Sheng Li, Erji Mao, Daniel Nelson, George Papen, Mukar-

ram Tariq, and Amin Vahdat. Lightwave Fabrics: At-Scale Optical Circuit Switching for

Datacenter and Machine Learning Systems. In Proceedings of the ACM SIGCOMM 2023

Conference, ACM SIGCOMM ’23, page 499–515, New York, NY, USA, 2023. Association for

Computing Machinery. doi:10.1145/3603269.3604836.

[106] Jed Liu, William Hallahan, Cole Schlesinger, Milad Sharif, Jeongkeun Lee, Robert Soulé,

Han Wang, Călin Caşcaval, Nick McKeown, and Nate Foster. p4v: practical verification for

programmable data planes. In Proceedings of the 2018 Conference of the ACM Special Interest

Group on Data Communication, SIGCOMM ’18, page 490–503, New York, NY, USA, 2018.

Association for Computing Machinery. doi:10.1145/3230543.3230582.

[107] Ming Liu, Tianyi Cui, Henry Schuh, Arvind Krishnamurthy, Simon Peter, and Karan

Gupta. O✏oading Distributed Applications onto SmartNICs Using IPipe. In Proceedings

of the ACM Special Interest Group on Data Communication, SIGCOMM ’19, page 318–333,

New York, NY, USA, 2019. Association for Computing Machinery. URL: https://doi-

org.stanford.idm.oclc.org/10.1145/3341302.3342079, doi:10.1145/3341302.3342079.

[108] Shiyu Liu, Ahmad Ghalayini, Mohammad Alizadeh, Balaji Prabhakar, Mendel Rosenblum,

and Anirudh Sivaraman. Breaking the Transience-Equilibrium Nexus: A New Approach to

Datacenter Packet Transport. In 18th USENIX Symposium on Networked Systems Design and

Implementation (NSDI 21), pages 47–63, Berkeley, CA, USA, April 2021. USENIX Associa-

tion. URL: https://www.usenix.org/conference/nsdi21/presentation/liu.

[109] Robert Love. Linux Kernel Development. Addison-Wesley Professional, 3rd edition, 2010.

URL: https://books.google.com/books?id=5BwdBAAAQBAJ.

[110] Michael Marty, Marc de Kruijf, Jacob Adriaens, Christopher Alfeld, Sean Bauer, Carlo Con-

tavalli, Michael Dalton, Nandita Dukkipati, William C. Evans, Steve Gribble, Nicholas Kidd,

Roman Kononov, Gautam Kumar, Carl Mauer, Emily Musick, Lena Olson, Erik Rubow,

Michael Ryan, Kevin Springborn, Paul Turner, Valas Valancius, Xi Wang, and Amin Vahdat.

Snap: a microkernel approach to host networking. In Proceedings of the 27th ACM Sympo-

sium on Operating Systems Principles, SOSP ’19, page 399–413, New York, NY, USA, 2019.

Association for Computing Machinery. doi:10.1145/3341301.3359657.

https://doi.org/10.1145/3603269.3604836
https://doi.org/10.1145/3230543.3230582
https://doi-org.stanford.idm.oclc.org/10.1145/3341302.3342079
https://doi-org.stanford.idm.oclc.org/10.1145/3341302.3342079
https://doi.org/10.1145/3341302.3342079
https://www.usenix.org/conference/nsdi21/presentation/liu
https://books.google.com/books?id=5BwdBAAAQBAJ
https://doi.org/10.1145/3341301.3359657

BIBLIOGRAPHY 108

[111] Mellanox. RoCE in the Data Center, October 2014. URL: https://www.mellanox.com/

related-docs/whitepapers/roce in the data center.pdf.

[112] Mellanox. BlueField SmartNIC for Ethernet - High Performance Ethernet Network

Adapter Cards, May 2021 [Online]. URL: https://www.mellanox.com/related-docs/

prod adapter cards/PB BlueField Smart NIC.pdf.

[113] Mellanox. Mellanox Innova-2 Flex Open Programmable SmartNIC, May 2021 [Online]. URL:

https://www.mellanox.com/files/doc-2020/pb-innova-2-flex.pdf.

[114] Zili Meng, Yaning Guo, Chen Sun, Bo Wang, Justine Sherry, Hongqiang Harry Liu, and Ming-

wei Xu. Achieving Consistent Low Latency for Wireless Real-Time Communications with

the Shortest Control Loop. In Proceedings of the ACM SIGCOMM 2022 Conference, SIG-

COMM ’22, page 193–206, New York, NY, USA, 2022. Association for Computing Machinery.

doi:10.1145/3544216.3544225.

[115] Rui Miao, Li Bo, Hongqiang Harry Liu, and Ming Zhang. Bu↵er sizing with HPCC. In

Proceedings of the 2019 Workshop on Bu↵er Sizing, BS ’19, pages 1–2, New York, NY, USA,

2019. Association for Computing Machinery. URL: http://buffer-workshop.stanford.edu/

papers/paper5.pdf.

[116] Leonid Mirkin and Zalman J. Palmor. Control Issues in Systems with Loop Delays. In

Dimitrios Hristu-Varsakelis and William S. Levine, editors, Handbook of Networked and

Embedded Control Systems, pages 627–648. Birkhäuser Boston, Boston, MA, 2005. doi:

10.1007/0-8176-4404-0 27.

[117] Radhika Mittal, Vinh The Lam, Nandita Dukkipati, Emily Blem, Hassan Wassel, Monia

Ghobadi, Amin Vahdat, Yaogong Wang, David Wetherall, and David Zats. TIMELY: RTT-

Based Congestion Control for the Datacenter. In Proceedings of the 2015 ACM Confer-

ence on Special Interest Group on Data Communication, SIGCOMM ’15, page 537–550,

New York, NY, USA, 2015. Association for Computing Machinery. URL: https://doi-

org.stanford.idm.oclc.org/10.1145/2785956.2787510, doi:10.1145/2785956.2787510.

[118] Je↵rey C. Mogul. TCP O✏oad Is a Dumb Idea Whose Time Has Come. In 9th Work-

shop on Hot Topics in Operating Systems (HotOS IX), Lihue, HI, May 2003. USENIX Asso-

ciation. URL: https://www.usenix.org/conference/hotos-ix/tcp-offload-dumb-idea-

whose-time-has-come.

https://www.mellanox.com/related-docs/whitepapers/roce_in_the_data_center.pdf
https://www.mellanox.com/related-docs/whitepapers/roce_in_the_data_center.pdf
https://www.mellanox.com/related-docs/prod_adapter_cards/PB_BlueField_Smart_NIC.pdf
https://www.mellanox.com/related-docs/prod_adapter_cards/PB_BlueField_Smart_NIC.pdf
https://www.mellanox.com/files/doc-2020/pb-innova-2-flex.pdf
https://doi.org/10.1145/3544216.3544225
http://buffer-workshop.stanford.edu/papers/paper5.pdf
http://buffer-workshop.stanford.edu/papers/paper5.pdf
https://doi.org/10.1007/0-8176-4404-0_27
https://doi.org/10.1007/0-8176-4404-0_27
https://doi-org.stanford.idm.oclc.org/10.1145/2785956.2787510
https://doi-org.stanford.idm.oclc.org/10.1145/2785956.2787510
https://doi.org/10.1145/2785956.2787510
https://www.usenix.org/conference/hotos-ix/tcp-offload-dumb-idea-whose-time-has-come
https://www.usenix.org/conference/hotos-ix/tcp-offload-dumb-idea-whose-time-has-come

BIBLIOGRAPHY 109

[119] Behnam Montazeri, Yilong Li, Mohammad Alizadeh, and John Ousterhout. Homa: A

Receiver-Driven Low-Latency Transport Protocol Using Network Priorities. In Proceed-

ings of the 2018 Conference of the ACM Special Interest Group on Data Communica-

tion, SIGCOMM ’18, page 221–235, New York, NY, USA, 2018. Association for Comput-

ing Machinery. URL: https://doi-org.stanford.idm.oclc.org/10.1145/3230543.3230564,

doi:10.1145/3230543.3230564.

[120] YoungGyoun Moon, SeungEon Lee, Muhammad Asim Jamshed, and KyoungSoo Park. Ac-

celTCP: Accelerating Network Applications with Stateful TCP O✏oading. In 17th USENIX

Symposium on Networked Systems Design and Implementation (NSDI 20), pages 77–92,

Santa Clara, CA, February 2020. USENIX Association. URL: https://www.usenix.org/

conference/nsdi20/presentation/moon.

[121] Matthew K. Mukerjee, Christopher Canel, Weiyang Wang, Daehyeok Kim, Srinivasan Se-

shan, and Alex C. Snoeren. Adapting TCP for Reconfigurable Datacenter Networks. In

17th USENIX Symposium on Networked Systems Design and Implementation (NSDI 20),

pages 651–666, Santa Clara, CA, February 2020. USENIX Association. URL: https:

//www.usenix.org/conference/nsdi20/presentation/mukerjee.

[122] A. Munir, I. A. Qazi, Z. A. Uzmi, A. Mushtaq, S. N. Ismail, M. S. Iqbal, and B. Khan.

Minimizing flow completion times in data centers. In 2013 Proceedings IEEE INFOCOM,

pages 2157–2165, April 2013. doi:10.1109/INFCOM.2013.6567018.

[123] Aisha Mushtaq, Radhika Mittal, James McCauley, Mohammad Alizadeh, Sylvia Rat-

nasamy, and Scott Shenker. Datacenter Congestion Control: Identifying What is Essen-

tial and Making It Practical. SIGCOMM Comput. Commun. Rev., 49(3):32–38, Novem-

ber 2019. URL: https://doi-org.stanford.idm.oclc.org/10.1145/3371927.3371932, doi:

10.1145/3371927.3371932.

[124] John Nagle. Congestion Control in IP/TCP Internetworks. RFC 896, January 1984. URL:

https://www.rfc-editor.org/info/rfc896, doi:10.17487/RFC0896.

[125] Netronome. About Agilio SmartNICs, May 2021 [Online]. URL: https://www.netronome.com/

products/smartnic/overview/.

[126] Miguel Neves, Lucas Freire, Alberto Schae↵er-Filho, and Marinho Barcellos. Verification of P4

programs in feasible time using assertions. In Proceedings of the 14th International Conference

https://doi-org.stanford.idm.oclc.org/10.1145/3230543.3230564
https://doi.org/10.1145/3230543.3230564
https://www.usenix.org/conference/nsdi20/presentation/moon
https://www.usenix.org/conference/nsdi20/presentation/moon
https://www.usenix.org/conference/nsdi20/presentation/mukerjee
https://www.usenix.org/conference/nsdi20/presentation/mukerjee
https://doi.org/10.1109/INFCOM.2013.6567018
https://doi-org.stanford.idm.oclc.org/10.1145/3371927.3371932
https://doi.org/10.1145/3371927.3371932
https://doi.org/10.1145/3371927.3371932
https://www.rfc-editor.org/info/rfc896
https://doi.org/10.17487/RFC0896
https://www.netronome.com/products/smartnic/overview/
https://www.netronome.com/products/smartnic/overview/

BIBLIOGRAPHY 110

on Emerging Networking EXperiments and Technologies, CoNEXT ’18, page 73–85, New York,

NY, USA, 2018. Association for Computing Machinery. doi:10.1145/3281411.3281421.

[127] Amy Ousterhout, Joshua Fried, Jonathan Behrens, Adam Belay, and Hari Balakrishnan.

Shenango: Achieving High CPU E�ciency for Latency-sensitive Datacenter Workloads. In 16th

USENIX Symposium on Networked Systems Design and Implementation (NSDI 19), pages

361–378, Boston, MA, February 2019. USENIX Association. URL: https://www.usenix.org/

conference/nsdi19/presentation/ousterhout.

[128] John Ousterhout. A Linux Kernel Implementation of the Homa Transport Protocol. In

2021 USENIX Annual Technical Conference (USENIX ATC 21), pages 99–115, Boston,

MA, July 2021. USENIX Association. URL: https://www.usenix.org/conference/atc21/

presentation/ousterhout.

[129] John Ousterhout. It’s Time to Replace TCP in the Datacenter, 2023. arXiv:2210.00714.

[130] John Ousterhout, Arjun Gopalan, Ashish Gupta, Ankita Kejriwal, Collin Lee, Behnam Mon-

tazeri, Diego Ongaro, Seo Jin Park, Henry Qin, Mendel Rosenblum, Stephen Rumble, Ryan

Stutsman, and Stephen Yang. The RAMCloud Storage System. ACM Trans. Comput. Syst.,

33(3), aug 2015. doi:10.1145/2806887.

[131] A.K. Parekh and R.G. Gallager. A generalized processor sharing approach to flow control in

integrated services networks: the single-node case. IEEE/ACM Transactions on Networking,

1(3):344–357, 1993. doi:10.1109/90.234856.

[132] Pensando. DSC-100 Distributed Services Card, May 2021 [Online]. URL: https://

pensando.io/wp-content/uploads/2020/03/Pensando-DSC-100-Product-Brief.pdf.

[133] Jon Postel. User Datagram Protocol. RFC 768, August 1980. URL: https://www.ietf.org/

rfc/rfc768.txt, doi:10.17487/RFC0768.

[134] George Prekas, Marios Kogias, and Edouard Bugnion. ZygOS: Achieving Low Tail Latency

for Microsecond-scale Networked Tasks. In Proceedings of the 26th Symposium on Operating

Systems Principles, SOSP ’17, page 325–341, New York, NY, USA, 2017. Association for

Computing Machinery. doi:10.1145/3132747.3132780.

[135] Pierre-Francois Quet, Sriram Chellappan, A. Durresi, M. Sridharan, Hitay Ozbay, and Raj

Jain. Guidelines for optimizing Multi-Level ECN, using fluid flow based TCP model. In

https://doi.org/10.1145/3281411.3281421
https://www.usenix.org/conference/nsdi19/presentation/ousterhout
https://www.usenix.org/conference/nsdi19/presentation/ousterhout
https://www.usenix.org/conference/atc21/presentation/ousterhout
https://www.usenix.org/conference/atc21/presentation/ousterhout
http://arxiv.org/abs/2210.00714
https://doi.org/10.1145/2806887
https://doi.org/10.1109/90.234856
https://pensando.io/wp-content/uploads/2020/03/Pensando-DSC-100-Product-Brief.pdf
https://pensando.io/wp-content/uploads/2020/03/Pensando-DSC-100-Product-Brief.pdf
https://www.ietf.org/rfc/rfc768.txt
https://www.ietf.org/rfc/rfc768.txt
https://doi.org/10.17487/RFC0768
https://doi.org/10.1145/3132747.3132780

BIBLIOGRAPHY 111

Proceedings of ITCOMM 2002 Quality of Service over Next Generation Internet, Boston, MA,

USA, August 2002.

[136] Sudarsanan Rajasekaran, Manya Ghobadi, and Aditya Akella. CASSINI: Network-Aware

job scheduling in machine learning clusters. In 21st USENIX Symposium on Networked Sys-

tems Design and Implementation (NSDI 24), pages 1403–1420, Santa Clara, CA, April 2024.

USENIX Association. URL: https://www.usenix.org/conference/nsdi24/presentation/

rajasekaran.

[137] Injong Rhee, Lisong Xu, Sangtae Ha, Alexander Zimmermann, Lars Eggert, and Richard

Sche↵enegger. CUBIC for Fast Long-Distance Networks. RFC 8312, February 2018. URL:

https://rfc-editor.org/rfc/rfc8312.txt, doi:10.17487/RFC8312.

[138] George F. Riley and Thomas R. Henderson. The ns-3 Network Simulator. In Klaus Wehrle,

Mesut Güneş, and James Gross, editors, Modeling and Tools for Network Simulation, pages 15–

34. Springer Berlin Heidelberg, Berlin, Heidelberg, 2010. doi:10.1007/978-3-642-12331-3 2.

[139] Arjun Roy, Hongyi Zeng, Jasmeet Bagga, George Porter, and Alex C. Snoeren. Inside the

Social Network’s (Datacenter) Network. In Proceedings of the 2015 ACM Conference on Special

Interest Group on Data Communication, SIGCOMM ’15, page 123–137, New York, NY, USA,

2015. Association for Computing Machinery. doi:10.1145/2785956.2787472.

[140] Ahmed Saeed, Varun Gupta, Prateesh Goyal, Milad Sharif, Rong Pan, Mostafa Ammar, Ellen

Zegura, Keon Jang, Mohammad Alizadeh, Abdul Kabbani, and Amin Vahdat. Annulus: A

Dual Congestion Control Loop for Datacenter and WAN Tra�c Aggregates. In Proceedings

of the Annual Conference of the ACM Special Interest Group on Data Communication on the

Applications, Technologies, Architectures, and Protocols for Computer Communication, SIG-

COMM ’20, page 735–749, New York, NY, USA, 2020. Association for Computing Machinery.

doi:10.1145/3387514.3405899.

[141] Amedeo Sapio, Marco Canini, Chen-Yu Ho, Jacob Nelson, Panos Kalnis, Changhoon Kim,

Arvind Krishnamurthy, Masoud Moshref, Dan Ports, and Peter Richtarik. Scaling Distributed

Machine Learning with In-Network Aggregation. In 18th USENIX Symposium on Networked

Systems Design and Implementation (NSDI 21), pages 785–808, Boston, MA, April 2021.

USENIX Association. URL: https://www.usenix.org/conference/nsdi21/presentation/

sapio.

https://www.usenix.org/conference/nsdi24/presentation/rajasekaran
https://www.usenix.org/conference/nsdi24/presentation/rajasekaran
https://rfc-editor.org/rfc/rfc8312.txt
https://doi.org/10.17487/RFC8312
https://doi.org/10.1007/978-3-642-12331-3_2
https://doi.org/10.1145/2785956.2787472
https://doi.org/10.1145/3387514.3405899
https://www.usenix.org/conference/nsdi21/presentation/sapio
https://www.usenix.org/conference/nsdi21/presentation/sapio

BIBLIOGRAPHY 112

[142] Michael Schapira and Keith Winstein. Congestion-Control Throwdown. In Proceedings

of the 16th ACM Workshop on Hot Topics in Networks, HotNets-XVI, page 122–128,

New York, NY, USA, 2017. Association for Computing Machinery. URL: https://doi-

org.stanford.idm.oclc.org/10.1145/3152434.3152446, doi:10.1145/3152434.3152446.

[143] Linus E. Schrage and Louis W. Miller. The Queue M/G/1 with the Shortest Remain-

ing Processing Time Discipline. Operations Research, 14(4):670–684, 1966. arXiv:https:

//doi.org/10.1287/opre.14.4.670, doi:10.1287/opre.14.4.670.

[144] Henrik Schuh. Accelerating Networked Systems With Programmable and Tightly-

Coupled NICs. PhD thesis, University of Washington, 2023. URL: https:

//www.proquest.com/dissertations-theses/accelerating-networked-systems-with-

programmable/docview/2915818227/se-2.

[145] Amazon Web Services. Amazon EC2 F1 Instances. https://aws.amazon.com/ec2/instance-

types/f1/, 2006. Accessed on 2020-08-10.

[146] Hemal Shah, Felix Marti, Wael Noureddine, Asgeir Eiriksson, and Robert Sharp. Remote

Direct Memory Access (RDMA) Protocol Extensions. RFC 7306, June 2014. URL: https:

//www.rfc-editor.org/info/rfc7306, doi:10.17487/RFC7306.

[147] D. Shan and F. Ren. Improving ECN marking scheme with micro-burst tra�c in data center

networks. In IEEE INFOCOM 2017 - IEEE Conference on Computer Communications, pages

1–9, May 2017. doi:10.1109/INFOCOM.2017.8057181.

[148] Rajath Shashidhara, Tim Stamler, Antoine Kaufmann, and Simon Peter. FlexTOE: Flexi-

ble TCP O✏oad with Fine-Grained Parallelism. In 19th USENIX Symposium on Networked

Systems Design and Implementation (NSDI 22), pages 87–102, Renton, WA, April 2022.

USENIX Association. URL: https://www.usenix.org/conference/nsdi22/presentation/

shashidhara.

[149] Arjun Singh, Joon Ong, Amit Agarwal, Glen Anderson, Ashby Armistead, Roy Bannon, Seb

Boving, Gaurav Desai, Bob Felderman, Paulie Germano, Anand Kanagala, Je↵ Provost, Ja-

son Simmons, Eiichi Tanda, Jim Wanderer, Urs Hölzle, Stephen Stuart, and Amin Vahdat.

Jupiter Rising: A Decade of Clos Topologies and Centralized Control in Google’s Datacenter

Network. In Proceedings of the 2015 ACM Conference on Special Interest Group on Data

https://doi-org.stanford.idm.oclc.org/10.1145/3152434.3152446
https://doi-org.stanford.idm.oclc.org/10.1145/3152434.3152446
https://doi.org/10.1145/3152434.3152446
http://arxiv.org/abs/https://doi.org/10.1287/opre.14.4.670
http://arxiv.org/abs/https://doi.org/10.1287/opre.14.4.670
https://doi.org/10.1287/opre.14.4.670
https://www.proquest.com/dissertations-theses/accelerating-networked-systems-with-programmable/docview/2915818227/se-2
https://www.proquest.com/dissertations-theses/accelerating-networked-systems-with-programmable/docview/2915818227/se-2
https://www.proquest.com/dissertations-theses/accelerating-networked-systems-with-programmable/docview/2915818227/se-2
https://aws.amazon.com/ec2/instance-types/f1/
https://aws.amazon.com/ec2/instance-types/f1/
https://www.rfc-editor.org/info/rfc7306
https://www.rfc-editor.org/info/rfc7306
https://doi.org/10.17487/RFC7306
https://doi.org/10.1109/INFOCOM.2017.8057181
https://www.usenix.org/conference/nsdi22/presentation/shashidhara
https://www.usenix.org/conference/nsdi22/presentation/shashidhara

BIBLIOGRAPHY 113

Communication, SIGCOMM ’15, page 183–197, New York, NY, USA, 2015. Association for

Computing Machinery. doi:10.1145/2785956.2787508.

[150] Anirudh Sivaraman, Alvin Cheung, Mihai Budiu, Changhoon Kim, Mohammad Alizadeh,

Hari Balakrishnan, George Varghese, Nick McKeown, and Steve Licking. Packet Transactions:

High-Level Programming for Line-Rate Switches. In Proceedings of the 2016 ACM SIGCOMM

Conference, SIGCOMM ’16, page 15–28, New York, NY, USA, 2016. Association for Comput-

ing Machinery. URL: https://doi-org.stanford.idm.oclc.org/10.1145/2934872.2934900,

doi:10.1145/2934872.2934900.

[151] Bruce Spang, Serhat Arslan, and Nick McKeown. Updating the theory of bu↵er sizing. Per-

formance Evaluation, 151:102232, 2021. doi:https://doi.org/10.1016/j.peva.2021.102232.

[152] Radu Stoenescu, Dragos Dumitrescu, Matei Popovici, Lorina Negreanu, and Costin Raiciu.

Debugging P4 programs with vera. In Proceedings of the 2018 Conference of the ACM Special

Interest Group on Data Communication, SIGCOMM ’18, page 518–532, New York, NY, USA,

2018. Association for Computing Machinery. doi:10.1145/3230543.3230548.

[153] Henning Stubbe. P4 compiler & interpreter: A survey. Future Internet (FI) and Innovative

Internet Technologies and Mobile Communication (IITM), 7:47–52, May 2017. doi:10.2313/

NET-2017-05-1 07.

[154] Mark Sutherland, Siddharth Gupta, Babak Falsafi, Virendra Marathe, Dionisios

Pnevmatikatos, and Alexandres Daglis. The NeBuLa RPC-Optimized Architecture.

In Proceedings of the ACM/IEEE 47th Annual International Symposium on Com-

puter Architecture, ISCA ’20, page 199–212, New York, NY, USA, 2020. IEEE

Press. URL: https://doi-org.stanford.idm.oclc.org/10.1109/ISCA45697.2020.00027,

doi:10.1109/ISCA45697.2020.00027.

[155] Synopsys. VCS: Industry’s Highest Performance Simulation Solution, May 2021 [Online]. URL:

https://www.synopsys.com/verification/simulation/vcs.html.

[156] Hitek Systems. 800G Ethernet FPGA IP Core Solution, Mar 2023 [Online]. URL: https:

//hiteksys.com/fpga-ip-cores/800g-ethernet-ip-core.

[157] Marcos A. M. Vieira, Matheus S. Castanho, Racyus D. G. Paćıfico, Elerson R. S. Santos,

Eduardo P. M. Câmara Júnior, and Luiz F. M. Vieira. Fast Packet Processing with eBPF and

https://doi.org/10.1145/2785956.2787508
https://doi-org.stanford.idm.oclc.org/10.1145/2934872.2934900
https://doi.org/10.1145/2934872.2934900
https://doi.org/https://doi.org/10.1016/j.peva.2021.102232
https://doi.org/10.1145/3230543.3230548
https://doi.org/10.2313/NET-2017-05-1_07
https://doi.org/10.2313/NET-2017-05-1_07
https://doi-org.stanford.idm.oclc.org/10.1109/ISCA45697.2020.00027
https://doi.org/10.1109/ISCA45697.2020.00027
https://www.synopsys.com/verification/simulation/vcs.html
https://hiteksys.com/fpga-ip-cores/800g-ethernet-ip-core
https://hiteksys.com/fpga-ip-cores/800g-ethernet-ip-core

BIBLIOGRAPHY 114

XDP: Concepts, Code, Challenges, and Applications. ACM Comput. Surv., 53(1), feb 2020.

doi:10.1145/3371038.

[158] Han Wang, Andy Fingerhut, Santiago Bautista, Nate Foster, and Chris Dodd. Portable Switch

Architecture, April 2021 [Online]. URL: https://p4lang.github.io/p4-spec/docs/PSA.pdf.

[159] Jue Wang, Yucheng Lu, Binhang Yuan, Beidi Chen, Percy Liang, Christopher De Sa, Christo-

pher Re, and Ce Zhang. CocktailSGD: fine-tuning foundation models over 500mbps net-

works. In Proceedings of the 40th International Conference on Machine Learning, ICML’23.

JMLR.org, 2023.

[160] Shie-Yuan Wang, Yo-Ru Chen, Hsien-Chueh Hsieh, Ruei-Syun Lai, and Yi-Bing Lin. A Flow

Control Scheme Based on Per Hop and Per Flow in Commodity Switches for Lossless Networks.

IEEE Access, 9:156013–156029, 2021. doi:10.1109/ACCESS.2021.3129595.

[161] Weitao Wang, Masoud Moshref, Yuliang Li, Gautam Kumar, T. S. Eugene Ng, Neal Card-

well, and Nandita Dukkipati. Poseidon: E�cient, Robust, and Practical Datacenter CC via

Deployable INT. In 20th USENIX Symposium on Networked Systems Design and Imple-

mentation (NSDI 23), pages 255–274, Boston, MA, April 2023. USENIX Association. URL:

https://www.usenix.org/conference/nsdi23/presentation/wang-weitao.

[162] Ranysha Ware, Matthew K. Mukerjee, Srinivasan Seshan, and Justine Sherry. Beyond Jain’s

Fairness Index: Setting the Bar For The Deployment of Congestion Control Algorithms. In Pro-

ceedings of the 18th ACM Workshop on Hot Topics in Networks, HotNets ’19, page 17–24, New

York, NY, USA, 2019. Association for Computing Machinery. doi:10.1145/3365609.3365855.

[163] Adam Wolnikowski, Stephen Ibanez, Jonathan Stone, Changhoon Kim, Rajit Manohar, and

Robert Soulé. Zerializer: Towards Zero-Copy Serialization. In Proceedings of the Workshop

on Hot Topics in Operating Systems, HotOS ’21, page 1–6, New York, NY, USA, 2021. As-

sociation for Computing Machinery. URL: https://doi-org.org/10.1145/3458336.3465283,

doi:10.1145/3458336.3465283.

[164] Jackson Woodru↵, Andrew W Moore, and Noa Zilberman. Measuring Burstiness in Data

Center Applications. In Proceedings of the 2019 Workshop on Bu↵er Sizing, BS ’19,

New York, NY, USA, 2019. Association for Computing Machinery. URL: https://doi-

org.stanford.idm.oclc.org/10.1145/3375235.3375240, doi:10.1145/3375235.3375240.

https://doi.org/10.1145/3371038
https://p4lang.github.io/p4-spec/docs/PSA.pdf
https://doi.org/10.1109/ACCESS.2021.3129595
https://www.usenix.org/conference/nsdi23/presentation/wang-weitao
https://doi.org/10.1145/3365609.3365855
https://doi-org.org/10.1145/3458336.3465283
https://doi.org/10.1145/3458336.3465283
https://doi-org.stanford.idm.oclc.org/10.1145/3375235.3375240
https://doi-org.stanford.idm.oclc.org/10.1145/3375235.3375240
https://doi.org/10.1145/3375235.3375240

BIBLIOGRAPHY 115

[165] Zhong-zhen Wu and Han-chiang Chen. Design and Implementation of TCP/IP O✏oad Engine

System over Gigabit Ethernet. In Proceedings of 15th International Conference on Computer

Communications and Networks, pages 245–250, 2006. doi:10.1109/ICCCN.2006.286280.

[166] Xilinx. Alveo Adaptable Accelerator Cards for Data Center Workloads, May 2021 [Online].

URL: https://www.xilinx.com/products/boards-and-kits/alveo.html.

[167] Xilinx. Virtex Ultrascale+ FPGA, May 2021 [Online]. URL: https://www.xilinx.com/

products/silicon-devices/fpga/virtex-ultrascale-plus.html.

[168] David Zats, Anand Padmanabha Iyer, Ganesh Ananthanarayanan, Rachit Agarwal, Randy

Katz, Ion Stoica, and Amin Vahdat. FastLane: Making Short Flows Shorter with Agile

Drop Notification. In Proceedings of the Sixth ACM Symposium on Cloud Computing, SoCC

’15, page 84–96, New York, NY, USA, 2015. Association for Computing Machinery. doi:

10.1145/2806777.2806852.

[169] Gaoxiong Zeng, Wei Bai, Ge Chen, Kai Chen, Dongsu Han, and Yibo Zhu. Combining ECN

and RTT for Datacenter Transport. In Proceedings of the First Asia-Pacific Workshop on

Networking, APNet ’17, page 36–42, New York, NY, USA, 2017. Association for Computing

Machinery. doi:10.1145/3106989.3107002.

[170] Qiao Zhang, Vincent Liu, Hongyi Zeng, and Arvind Krishnamurthy. High-Resolution Mea-

surement of Data Center Microbursts. In Proceedings of the 2017 Internet Measurement

Conference, IMC ’17, page 78–85, New York, NY, USA, 2017. Association for Comput-

ing Machinery. URL: https://doi-org.stanford.idm.oclc.org/10.1145/3131365.3131375,

doi:10.1145/3131365.3131375.

[171] Zhen Zhang, Chaokun Chang, Haibin Lin, Yida Wang, Raman Arora, and Xin Jin. Is Network

the Bottleneck of Distributed Training? In Proceedings of the Workshop on Network Meets

AI & ML, NetAI ’20, page 8–13, New York, NY, USA, 2020. Association for Computing

Machinery. doi:10.1145/3405671.3405810.

[172] Renjie Zhou, Dezun Dong, Shan Huang, and Yang Bai. FastTune: Timely and Precise Con-

gestion Control in Data Center Network. In 2021 IEEE Intl Conf on Parallel Distributed

Processing with Applications, Big Data Cloud Computing, Sustainable Computing Com-

munications, Social Computing Networking (ISPA/BDCloud/SocialCom/SustainCom), pages

https://doi.org/10.1109/ICCCN.2006.286280
https://www.xilinx.com/products/boards-and-kits/alveo.html
https://www.xilinx.com/products/silicon-devices/fpga/virtex-ultrascale-plus.html
https://www.xilinx.com/products/silicon-devices/fpga/virtex-ultrascale-plus.html
https://doi.org/10.1145/2806777.2806852
https://doi.org/10.1145/2806777.2806852
https://doi.org/10.1145/3106989.3107002
https://doi-org.stanford.idm.oclc.org/10.1145/3131365.3131375
https://doi.org/10.1145/3131365.3131375
https://doi.org/10.1145/3405671.3405810

BIBLIOGRAPHY 116

238–245, New York City, NY, USA, 2021. IEEE. doi:10.1109/ISPA-BDCloud-SocialCom-

SustainCom52081.2021.00043.

[173] Yang Zhou, Zezhou Wang, Sowmya Dharanipragada, and Minlan Yu. Electrode: Accelerat-

ing Distributed Protocols with eBPF. In 20th USENIX Symposium on Networked Systems

Design and Implementation (NSDI 23), pages 1391–1407, Boston, MA, April 2023. USENIX

Association. URL: https://www.usenix.org/conference/nsdi23/presentation/zhou.

[174] Lingjun Zhu, Yifan Shen, Erci Xu, Bo Shi, Ting Fu, Shu Ma, Shuguang Chen, Zhongyu Wang,

Haonan Wu, Xingyu Liao, Zhendan Yang, Zhongqing Chen, Wei Lin, Yijun Hou, Rong Liu,

Chao Shi, Jiaji Zhu, and Jiesheng Wu. Deploying User-space TCP at Cloud Scale with LUNA.

In 2023 USENIX Annual Technical Conference (USENIX ATC 23), pages 673–687, Boston,

MA, July 2023. USENIX Association. URL: https://www.usenix.org/conference/atc23/

presentation/zhu-lingjun.

[175] Yibo Zhu, Haggai Eran, Daniel Firestone, Chuanxiong Guo, Marina Lipshteyn, Yehonatan

Liron, Jitendra Padhye, Shachar Raindel, Mohamad Haj Yahia, and Ming Zhang. Conges-

tion Control for Large-Scale RDMA Deployments. In Proceedings of the 2015 ACM Con-

ference on Special Interest Group on Data Communication, SIGCOMM ’15, page 523–536,

New York, NY, USA, 2015. Association for Computing Machinery. URL: https://doi-

org.stanford.idm.oclc.org/10.1145/2785956.2787484, doi:10.1145/2785956.2787484.

[176] Yibo Zhu, Monia Ghobadi, Vishal Misra, and Jitendra Padhye. ECN or Delay: Lessons Learnt

from Analysis of DCQCN and TIMELY. In Proceedings of the 12th International on Conference

on Emerging Networking EXperiments and Technologies, CoNEXT ’16, page 313–327, New

York, NY, USA, 2016. Association for Computing Machinery. doi:10.1145/2999572.2999593.

https://doi.org/10.1109/ISPA-BDCloud-SocialCom-SustainCom52081.2021.00043
https://doi.org/10.1109/ISPA-BDCloud-SocialCom-SustainCom52081.2021.00043
https://www.usenix.org/conference/nsdi23/presentation/zhou
https://www.usenix.org/conference/atc23/presentation/zhu-lingjun
https://www.usenix.org/conference/atc23/presentation/zhu-lingjun
https://doi-org.stanford.idm.oclc.org/10.1145/2785956.2787484
https://doi-org.stanford.idm.oclc.org/10.1145/2785956.2787484
https://doi.org/10.1145/2785956.2787484
https://doi.org/10.1145/2999572.2999593

	Abstract
	Acknowledgments
	Introduction
	End-Host Latency and Hardware Offloading
	Network Latency and Congestion Control
	In This Dissertation

	Background and Related Work
	The Transport Layer
	Software-Based Designs
	Hardware-Based Designs

	Congestion Control Algorithms and Transport Protocols
	Sender-Driven Algorithms
	Receiver-Driven Algorithms
	Switch-Driven Algorithms

	Summary and Remarks

	Programmable NICs for Lower Transport Layer Latency
	Transport Layer Dissected
	Protocol Taxonomy
	Building Blocks

	NanoTransport Architecture
	Programmable Components
	Stateful Primitives
	Reassembly Module
	Packetization Module
	Timer Module

	Building NanoTransport Hardware
	Programmable Modules
	Reassembly and Packetization Modules
	Timer Modules
	Protocol Implementations

	Evaluating NanoTransport
	Latency and Throughput Microbenchmarks
	End-to-end Evaluation
	Feasibility

	Discussion
	FPGA versus ASIC
	Programming New Protocols
	Multiple Concurrent Protocols
	Encryption and Compression
	Serializing RPC Data
	Scalability
	Other Use-Cases

	Sub-RTT Congestion Control for Lower Network Latency
	Finding Precise Congestion Signals
	Handicap of Surrogate Signals
	A Non-Surrogate Signal - Stamping Queue Occupancy

	Towards Minimal Control Loop Delay
	Feedback Delay
	Observation Period

	Designing Precise and Sub-RTT Congestion Control
	SRC - Sub-RTT Control
	PRU - Proactive Ramp Up
	SM - Supply Matching

	Implementing Bolt Congestion Control
	Switch Prototype
	Host Prototype
	Security and Authentication

	Evaluating Bolt
	Micro-Benchmarks
	Sensitivity Analysis
	Fairness Analysis
	Large Scale Simulations
	Bolt in the Lab

	Discussion
	Practical Considerations
	Bolt with QoS
	Approximating SRC Overhead
	Buffer Sizing Analysis for Sub-RTT Control

	Conclusions
	Dissertation Takeaways
	Future Directions
	Concluding Remarks

	Bibliography

