
Experimental Study of Router Buffer Sizing
� y

Neda Beheshti
Department of Electrical
Engineering, Stanford

University, Stanford, CA, USA
nbehesht@stanford.edu

Yashar Ganjali
Department of Computer

Science, University of Toronto,
Toronto, ON, Canada

yganjali@cs.toronto.edu

Monia Ghobadi
Department of Computer

Science, University of Toronto,
Toronto, ON, Canada

monia@cs.toronto.edu

Nick McKeown
Department of Electrical
Engineering, Stanford

University, Stanford, CA, USA
nickm@stanford.edu

Geoff Salmon
Department of Computer

Science, University of Toronto,
Toronto, ON, Canada

geoff@cs.toronto.edu

ABSTRACT

During the past four years, several papers have proposed
rules for sizing buffers in Internet core routers. Appenzeller
et al. suggest that a link needs a buffer of size O(C=

p
N),

where C is the capacity of the link, and N is the number of
flows sharing the link. If correct, buffers could be reduced
by 99% in a typical backbone router today without loss in
throughput. Enachecsu et al., and Raina et al. suggest that
buffers can be reduced even further to 20-50 packets if we
are willing to sacrifice a fraction of link capacities, and if
there is a large ratio between the speed of core and access
links. If correct, this is a five orders of magnitude reduc-
tion in buffer sizes. Each proposal is based on theoretical
analysis and validated using simulations. Given the poten-
tial benefits (and the risk of getting it wrong!) it is worth
asking if these results hold in real operational networks. In
this paper, we report buffer-sizing experiments performed
on real networks - either laboratory networks with commer-
cial routers as well as customized switching and monitoring
equipment (UW Madison, Sprint ATL, and University of
Toronto), or operational backbone networks (Level 3 Com-
munications backbone network, Internet2, and Stanford).
The good news: Subject to the limited scenarios we can
create, the buffer sizing results appear to hold. While we
are confident that the O(C=

p
N) will hold quite generally

for backbone routers, the 20-50 packet rule should be ap-

�This work was supported under DARPA/MTO DOD-
N award no. W911NF-04-0001/KK4118 (LASOR
PROJECT), and the Buffer Sizing Grant no. W911NF-
05-1-0224 and W911NF-07-1-0024. University of Toronto’s
work was supported by NSERC Discovery, NSERC RTI as
well as a grant from Cisco Systems.
yThe experiments’ data is available online at:
http://sysweb.cs.toronto.edu/bsizing/

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
IMC’08, October 20–22, 2008, Vouliagmeni, Greece.
Copyright 2008 ACM 978-1-60558-334-1/08/10 ...$5.00.

plied with extra caution to ensure that network components
satisfy the underlying assumptions.

Categories and Subject Descriptors

C.2 [Computer-Communication Networks]: Internet-
working

General Terms

Experimentation, Measurement, Performance

Keywords

NetFPGA, Network Test-beds, Router Buffer Size, TCP

1. MOTIVATION AND INTRODUCTION
Most routers in the backbone of the Internet have a band-

width delay product worth of buffering for each link; i.e.
B = 2T � C, where C is the bottleneck link capacity, and
2T is the effective two-way propagation delay (RTT) of TCP
flows through the core router [16, 17, 27]. This value is rec-
ommended by Internet RFCs [6], architectural guidelines,
and network operators.

On the other hand, several recent papers propose con-
siderably reducing the buffers in backbone routers [4, 9, 23].
For example, Appenzeller et al. [4] propose that the buffers

can be reduced to 2T � C=
p
N , where N is the number

of long-lived flows sharing the link. Throughout the paper
we will refer to this as the small buffer model. The basic
idea follows from the observation that the buffer size is, in
part, determined by the sawtooth window size process of
the TCP flows. The bigger the sawtooth, the bigger the
buffers need to be in order to guarantee 100% throughput.
As the number of flows increases, variations in the aggregate
window size process (the sum of all the congestion window
size processes for each flow) decrease, following the central
limit theorem. The result relies on several assumptions: (1)
that flows are sufficiently independent of each other to be
desynchronized, (2) that the buffer size is dominated by the
long-lived flows, and, perhaps most importantly, (3) that
there are no other significant unmodeled reasons for buffer-
ing more packets. If the result is correct, then a backbone
link carrying 10,000 long-lived flows could have its buffer
size reduced by a factor of 100 without loss in throughput.

If, though, the result is wrong, then the consequences of
reducing the buffer sizes in a router, or in an operational
commercial network, could be quite severe. The problem is,
how to decide if the result is correct, without trying it in
an operational network? But who would reduce buffers in
an operational network, and risk losing customers’ traffic,
before knowing if the result is correct?

It is, therefore, not surprising that, apart from the re-
sults we present here, we are not aware of any backbone
commercial network in which the buffers have been reduced
to anywhere close to 2T � C=

p
N . So the first goal of our

work is to experiment with small buffers in laboratory and
operational networks.

More recently, Enachescu et al. [9] and Raina et al. [23]
propose reducing buffers much further to O(logW) pack-
ets in backbone routers, where W is the congestion window
size. This translates to a few dozen packets for present-day
window sizes [9]. We will refer to this as the tiny buffer
model. In [9], the authors reach their conclusion by consid-
ering the tradeoff between reducing buffers and losing some
throughput – assumed to be 10-20%. In other words, when
congested, links behave as if they run at 80-90% of their
nominal rates. This could be an interesting assumption in
networks with abundant link capacity, or in future optical
networks where link capacity might be cheaper than buffers.
The results depend on the network traffic being non-bursty,
which they propose can happen in two ways: (1) if the core
links run much faster than the access links (which they do
today), then the packets from a source are spread out and
bursts are broken, or (2) TCP sources are changed so as to
pace the delivery of packets. If the results are correct, and
relevant, then a backbone link could reduce its buffers by
five orders of magnitude.

Again, it is difficult to validate these results in an oper-
ational network, and we are not aware of any other com-
prehensive laboratory or network experiments to test the
O(logW) results. So it is the second goal of our work to
experiment with tiny buffers in laboratory and operational
networks.

In the remainder of this paper we describe a number of lab-
oratory and network experiments performed between 2003
and 2008. The laboratory experiments were performed in
the WAIL laboratory at University of Wisconsin Madison,
in the Sprint Advanced Technology Laboratory, and in Uni-
versity of Toronto’s Advanced Packet Switch and Network-
ing Laboratory. Experiments were also performed on the
following operational networks: Level 3 Communications’
operational backbone network, Internet2 and a the Stan-
ford University dormitory network. We should make clear
that our results are necessarily limited; while a laboratory
network can use commercial backbone routers and accurate
TCP sources, it is not the same as a real operational back-
bone network with millions of real users. On the other hand,
experiments on an operational network are inevitably lim-
ited by the ability to control and observe the experiments.
Commercial routers do not offer accurate ways to set the
buffer size and do not collect real-time data on the occu-
pancy of their queues. Real network experiments are not re-
peatable for different buffer sizes, making apples-with-apples
comparisons difficult.

In laboratory experiments, we generate live TCP traffic
(ftp, telnet, or http) using a cluster of PCs or commercial
traffic generators. We measure the performance from either

Figure 1: Setup used for buffer sizing experiments in Level 3

Communications’ backbone network. The incoming traffic

to Router A is divided amongst the three links connecting

Router A to Router B using a static hash function to balance

the flows.

real-time or statistical traces collected from the system. On
one hand, we have a lot of control over the experiments,
and can observe almost anything. On the other hand, the
traffic is synthetic and might not represent real users. We
note that we cannot simply use traces gathered from oper-
ational backbone networks for buffer sizing experiments be-
cause TCP uses a feedback loop to control congestion, thus
live traffic is needed so that we can measure the reaction of
flow sources to network conditions.

In our experiments on operational backbone networks we
can test the results with real user traffic. However, we have
no control over the traffic pattern or the system load. For ex-
ample, Internet2 has very low load (about 20� 30%), which
means congestion does not occur naturally. Fortunately, at
the time of our experiments, part of the Level 3 Communi-
cations network included some links facing a 3rd party non-
customer network which ran at very high link utilization
(up to 96%). We report results from both networks. Where
possible, we run experiments over a wide range of operating
conditions for both the small buffer and tiny buffer models,
including system load ranging from 25% up to 100%, differ-
ent number of users, various traffic patterns and flow sizes,
different propagation delays, access link capacities, and con-
gestion window limits.

The rest of the paper is organized as follows: Section 2
describes the small buffer experiments. We focus on exper-
iments performed on Level 3 Communications’ operational
commercial backbone network, and give a brief overview of
other experiments. Section 3 is on tiny buffer size experi-
ments performed at University of Toronto and Sprint ATL.
Section 4 concludes the paper.

2. SMALL BUFFER EXPERIMENTS
We start with, perhaps, the most interesting experiments,

which are performed on Level 3 Communications’ opera-
tional commercial backbone network. We follow these exper-
iments with a brief overview of other experiments we have
conducted in other networks.

2.1 Experiment Setup and Characteristics
Although we have limited control of an operational net-

work, these experiments have several interesting properties.
First, the links under study are highly utilized with real live
traffic. Their utilization varies between 28:61% and 95:85%
during a 24 hour period, and remains above 85% for about
four hours every day (an exceptionally high value - new link

capacity was added right after the experiments were com-
pleted).

The link under study consists of three physical, load-
balanced links (Figure 1). Traffic at the upstream router
is divided equally among the three physical links. Each in-
coming flow is assigned to one of the three links using a
static hash function based on the source-destination IP and
port numbers of the flow. Ideally, there is equal traffic on
each link (particularly as there are thousands of flows)1. If
we give each physical link a different amount of buffering,
we can perform an apples-with-apples comparison between
different buffer sizes under almost identical conditions.

The three physical links are OC-48 (2.5Gbps) links facing
a 3rd party non-customer network, carrying Internet mix
traffic with an emphasis toward high speed consumer ac-
cess. Assuming an average rate of 250Kbps per flow, each
link carries about 10,000 flows when highly utilized2. The
default buffer size is 190ms per-link (60MB or 125,000 pack-
ets assuming an average packet size of 500B). We reduce
the buffer sizes to 10ms (about 3MB or 6,000 packets), 5ms
(1.5MB or 3,000 packets), 2.5ms (750KB or 1,500 packets)
and 1ms (300KB or 600 packets). Based on the small buffer
size model, we can expect to need a buffer size of about
2-6ms (depending on the actual value of N).

The buffer sizes are set for 5 days, so they capture the
impact of daily and weekly changes in traffic. The whole
experiment lasts two weeks and was performed in March,
2005. We gather link throughput and packet drop statistics
which are collected by the router every 30 seconds from each
of the three links. It would be preferable to capture all
packets and recreate the time series of the buffer occupancy
in the router, but the network does not have the facility to
do this. Still, we are able to infer some interesting results.

We also actively inject test flows, measuring the through-
put and drops, and compare the performance of the flows
going through different links to find out the impact of buffer
size reduction. The amount of test flow traffic is kept small.
It is worth noting that the network does not use traffic shap-
ing at the edges or in the core. The routers do not use RED,
and packets are dropped from the tail of the queue.

2.2 Experiment Results
During the course of the experiments, we always keep the

buffer size on one link at its original size of 190ms and re-
duce the buffer size on the other two links. Figure 2 shows
the packet drop rate as a function of system load for various
buffer sizes. As explained before, both the load and drop
rates are measured in time intervals of 30 seconds, and each
dot in the graph represents one such interval. Figure 2(a)
shows that we do not see a single packet drop using a buffer
size of 190ms. Similarly, we observe no drops using either
10ms or 5ms of buffering during the course of the experi-
ments, which last more than 10 days for the 190ms buffer
size, and about 5 days for each of the 10ms and 5ms buffer
sizes.

It is quite surprising that the buffer size can be reduced
by a factor of forty without dropping packets even though
the utilization frequently exceeds 95%. It suggests that
the backbone traffic is very smooth. Others also report

1In this case, the load balancing was not ideal, as we will
explain later.
2This assumption is arbitrary based on what we assume to
be the average end-user bandwidth.

smoothness in traffic in core networks [13,14], despite some-
what older results which show self-similarity in core traf-
fic [10, 11, 24]. Whether this is a result of a shift in traffic
pattern and network characteristics over time, or simply the
consequence of huge amounts of multiplexing, remains to
be determined. We find traffic to be extremely smooth in
laboratory and backbone networks when there are a large
number of flows.

Figure 2(b) shows the drop rate as a function of load,
when the buffer sizes is reduced to 2.5ms. This is in the
lower part of the range defined by the small buffer sizing
model, and, as expected, we start to observe some packet
drops. However, packet drops are still rare; less than 0.02%
for the majority of samples. In two samples over five days,
we see a packet drop rate between 0.02% and 0.04% and in
one sample the drop rate is close to 0.09% 3.

Figure 2(c) shows what happens when we reduce the buffer
size to 1ms. Here there are a lot more packet drops, which we
expect because the the buffer size is now about half the value
suggested by the small buffer sizing model. It is interesting
to note that almost all of the drops occur when the load is
above 90%, even though the load value is averaged over a
period of 30 seconds. The instantaneous load is presumably
higher, and the link must be the bottleneck for some of the
flows. We conclude that having some packet drops does not
lead to a reduction in available throughput; it appears that
TCP’s congestion control algorithms are functioning well.

Next we take a closer look at link utilizations over time.
Figure 3(a) compares the link utilization for the links with
190ms and 1ms of buffering, over three days, by plotting
their ratio (i.e. relative utilization) as a function of time.
Ideally, the utilization on both links would be equal at all
times. However, the differences are not symmetric. The link
with 1ms buffering has a slightly higher utilization for the
majority of the time.

To further investigate the cause of this asymmetry, we plot
link utilizations as a function of time in Figure 3(b). By com-
paring this graph with Figure 3(a) we observe that during
the periods when the overall load of the system is high, the
link with 1ms has a slightly higher utilization than the link
with 190ms. Figure 3(c) suggests the same, in a different
yet more precise way. Each dot in this figure, represents the
utilization of the two links in a period of 30 seconds. We can
see that the majority of the dots fall below the 45 degree line
in the graph, which suggests the link with 1 ms of buffering
has a higher utilization.

The higher utilization with smaller buffers can be attributed
to one of the following two reasons: (1) It might be due to
higher loads on the link with 1ms of buffering. Since we have
more drops on this link, sources need to send duplicates of
the dropped packets, and that might be why we see a higher
load. Or, (2) the load balancing scheme might be skewed
and might divide the traffic somewhat unevenly among the
three links, thus directing more traffic to one of the links.

The question is which of the two reasons is the cause of
higher link utilization on one of the two links? The easiest
way to answer this question would be swapping the buffer
sizes on the two links under study. Unfortunately, immedi-

3It would be very interesting to take a closer look at how
packet drops are distributed over time. Unfortunately, given
our limited measurement capabilities in a commercial infra-
structure, we cannot study the distribution of packet drops
over time granularities finer than 30 seconds.

0

0.04

0.08

0.12

0.16

0.2

0 20 40 60 80 100

Load (%)

P
a

c
k

e
t

D
ro

p
 R

a
te

 (
%

)

0

0.04

0.08

0.12

0.16

0.2

0 20 40 60 80 100

Load (%)

P
a

c
k

e
t

D
ro

p
 R

a
te

 (
%

)

0

0.04

0.08

0.12

0.16

0.2

0 20 40 60 80 100

Load (%)

P
a

c
k

e
t

D
ro

p
 R

a
te

 (
%

)

(a) (b) (c)

Figure 2: Packet drop rate as a function of load for different buffer sizes. (a) For a buffer size of 190ms we observe no packet

drops. Although not shown here, there is also no drops with either 10ms or 5ms of buffering. (b) For a buffer size of 2.5ms

packet drops occur in only a handful of cases. (c) When the buffer size is set to 1ms we observe packet drops during high

utilization time periods.

0.90

0.95

1.00

1.05

1.10

1.15

1.20

Time

R
e

la
ti

v
e

 U
ti

li
z
a

ti
o

n

Day 1 Day 3Day 2
20

30

40

50

60

70

80

90

100

Time

U
ti

li
z
a

ti
o

n
 (

%
)

Buffer 1ms Buffer 190ms

Day 1 Day 3Day 2 20

40

60

80

100

20 40 60 80 100

Utilization (%) - link with 1ms buffer

U
ti

li
z
a

ti
o

n
 (

%
)

-
li
n

k
 w

it
h

 1
9

0
m

s
 b

u
ff

e
r

(a) (b) (c)

Figure 3: Comparing the utilization of the links with 1ms and 190ms of buffering. (a) Link utilization using 1ms buffering

relative to 190ms buffering. (b) Individual link utilizations over time. (c) Utilization of 1ms buffer link vs. the utilization of

the 190ms buffer link.

ately after our experiments, Level 3 upgraded the network
and added extra capacity to reduce the load on the links we
were studying, which means we could not repeat the exper-
iment with the same conditions.

Interestingly, we see the same phenomena (higher utiliza-
tion in one link than the others) when the buffer sizes are
set to 190ms, and 5ms on two links. Since we do not have
any packet drops in these cases, buffer occupancies in both
links cannot be affected by packet drops, the RTT of flows
must be the same in both links, and therefore (1) cannot be
the reason here, i.e. any difference in utilization is most
probably not a result of the reaction of TCP sources to
packet drops4. In other words, we associate these slight dif-
ferences between link utilizations with imperfections in the
load balancing scheme deployed in the system, rather than
the changes in buffer sizes. We conclude that reducing buffer
sizes in this network does not have a significant impact on
the performance.

4Based on our experiment results, the load balancing scheme
used in this system was changed to one which is believed to
be more fair in distributing the load.

2.3 Other Small Buffer Experiments
Other than the experiments on Level 3 Communications’

backbone network, we have also conducted some other ex-
periments with the small buffer sizing model. These experi-
ments include University of Wisconsin Madison’s Advanced
Internet Laboratory (WAIL), and Stanford University’s dor-
mitory network.

In the WAIL experiment, already reported by Appenzeller
et al. [4], a cluster of PCs is used to generate up to 400 live
TCP flows, and the traffic is directed to a Cisco GSR router.
The buffer sizes on the router is reduced by a factor of 10-
20, which does not result in any degradation in the system
throughput.

In the Stanford University experiment, we use a Cisco
VXR 7200 which connects the dormitories to the Internet
via a 100Mbps link. Traffic is from a mix of different appli-
cations including web, ftp, games, peer-to-peer, streaming
and others, and we have 400-1900 flows at any given time.
The buffer sizes on the router are reduced by a factor of 20
with no impact on network throughput. We omit the de-
tails of these experiments due to limited space and refer the
interested reader to [15] for more details. All of these ex-
periments are inline with the small buffers theory, which is
based on loose assumptions on the number of flows and their

independence. We are fairly confident that the O(C=
p
N)

will hold quite generally for backbone routers.

3. TINY BUFFER EXPERIMENTS
In this section we describe our experiments performed in

the context of the tiny buffer model: i.e. we consider a single
point of congestion, assume core links run much faster than
the access links, and expect a 10-20% reduction in network
throughput. Without a guarantee that these conditions hold
in an operational backbone network, it is not feasible to test
the tiny buffer model, and, therefore, we have to content
ourselves to laboratory experiments. We understand this is
a limiting factor, and view our work as a first pass in a more
comprehensive experimental study of the tiny buffer sizing
model by us and others.

3.1 University of Toronto Experiments
We perform an extensive set of experiments on tiny buffer

sizing at University of Toronto’s Advanced Packet Switch
and Networking Laboratory. The goal is to study the impact
of tiny buffers on network performance and to identify con-
ditions under which tiny buffers are sufficient. During the
course of our experiments, we vary several network parame-
ters such as buffer size in routers, packet injection times, and
hardware level parameters. The performance metrics that
we study are link utilization, an important factor from Inter-
net Service Providers’ point of view, as well as loss and flow
completion times, which are major concerns of end-users.

3.1.1 Experiment Setup

Performing time-sensitive network experiments is extremely
difficult, especially in the context of tiny buffers, mainly be-
cause creating a network with a topology that is representa-
tive of a real backbone network requires significant resources.
During the course of our experiments, we encounter sev-
eral challenges, including generating realistic network traffic,
emulating delay, approximating large topologies, collecting
high-resolution packet-level measurements, and accounting
for scaling approximations. In general, these factors, along
with hardware/software configuration and limitations, can
have a large influence on an experiment’s outcome. In [5]
we study the challenges associated with performing time-
sensitive network experiments in a test-bed. We provide
guidelines for setting up test-beds, paying particular atten-
tion to those factors that may affect the accuracy of exper-
imental results, and describe obstacles encountered during
our own experiments. Below we summarize the important
factors for our tiny buffers experiments.

Traffic Generation: As mentioned above, generating
realistic traffic is one of the key challenges in modeling a
network. Experiments in a laboratory setup often use mul-
tiple hosts as traffic generators. However, creating a large
number of connections, in order to model traffic in networks
closer to the core of the Internet, with thousands of flows,
is not a trivial task. In our experiments, the traffic is gen-
erated using the open-source Harpoon traffic generator [25].
We use a closed-loop version [22] of Harpoon, modified by
researchers at the Georgia Institute of Technology. It is
shown in [21] that most Internet traffic (60-80%) conforms
to a closed-loop flow arrival model. In this model, a given
number of users (running at the client hosts) perform suc-
cessive TCP requests from the servers. The size of each
TCP transfer follows a specified random distribution. Af-

ter each download, the user stays idle for a thinking period
which follows another distribution. We also made several
further modifications to the closed-loop Harpoon: each TCP
connection is immediately closed once the transfer is com-
plete, the thinking period delay is more accurately timed,
and client threads with only one TCP socket use blocking in-
stead of non-blocking sockets. For the transfer sizes, we use
a Pareto distribution with mean 80KB and shape parameter
1.5. These values are realistic, based on comparisons with
actual packet traces [22]. The think periods follow an expo-
nential distribution with a mean duration of one second. We
perform extensive experiments to evaluate Harpoon’s TCP
traffic; the results are provided in the Appendix.

Switching and Routing: One of the major problems
we encountered while performing buffer sizing experiments
is that commercial routers do not allow precise adjustment
of their buffer sizes. Moreover, they are not able to provide
a precise buffer occupancy time-series, which is essential for
studying buffer sizing. To address these issues, we use a
programmable network component called NetFPGA [2] as
the core element of our test-bed. NetFPGA is a PCI form
factor board that contains reprogrammable FPGA elements
and four Gigabit Ethernet interfaces. Incoming packets to
a NetFPGA board can be processed, possibly modified, and
sent out on any of the four interfaces. Using a NetFPGA as
a router allows us to precisely set the buffer sizes to a specific
number of either bytes or packets, and the openness of the
NetFPGA platform avoids the dangers of hidden buffers that
may exist in commercial routers.

Traffic Monitoring: Obtaining the exact queue occu-
pancy, the packet loss rate and the bottleneck link utiliza-
tion over time is vital for experiments involving small packet
buffers, which are extremely sensitive to packet timings. Un-
fortunately, to the best of our knowledge, no commercial
router provides these metrics today. However, we added a
module to the NetFPGA-based router that records an event
each time a packet is written to, read from or dropped by
an output queue [5]. Each event includes the packet size
and the precise time that it occurred, with an 8 nanosecond
granularity. These events are gathered together into event
packets, which can be received and analyzed by the com-
puter hosting the NetFPGA board or another computer on
the network. The event packets contain enough information
to reconstruct the exact queue occupancy over time and to
determine the packet loss rate and bottleneck link utiliza-
tion. The resulting data is at a previously unobtainable level
of precision, which is invaluable for our experiments.

Packet Pacing: The tiny buffer model assumes network
traffic is paced. This happens naturally if we have slow
access links. As packets of a TCP flow cross the boundaries
of slow access links (usually operating at a few Mbps) to
high capacity core links (operating at tens of Gbps) they are
automatically spaced out. However, if access links are fast,
sources need to implement Paced TCP [23], which spaces
out packets as they leave the source.

To study the necessity of the pacing assumption in the tiny
buffer model, we perform experiments with paced and non-
paced traffic. We use the Precise Software Pacer (PSPacer) [26]
package to create the paced traffic by emulating multiple
slower access links at each server. The PSPacer package is
installed as a loadable kernel module for the Linux platform
and provides precise network bandwidth control and traffic
smoothing. In the non-paced experiments, we make no ef-

Servers Clients

Delay emulator GigE switch

1 Gbps

bottleneck

NetFPGA router

Servers

Bottleneck router

Clients

(1)

(2)

(1)

(2)

(3)

(4)

(3)

(4)

Delay emulatorsNetFPGA routers GigE switches

(a) (b)

Figure 4: Topologies of the network used in our experiments. The capacity of all links is 1Gbps.

fort to pace the traffic. Both experiments use an unmodified
version of TCP, as implemented by the Linux network stack.

Packet Delay: To emulate the long Internet paths in
a test-bed it is necessary to artificially delay every packet.
We route all traffic through a host running NISTNet [7], a
network emulator, to introduce propagation delays in the
packets that flow from the clients to the servers. The NIST-
Net host is neither a client nor a server in the experiment.

The traffic at the delay emulator machine is monitored
using tcpdump, which captures the headers of every packet.
In some circumstances, under high-load tcpdump may not
capture a packet, however we observe that the number of
such missed packets is negligible: less than 0.1% of the total
packets. We use these packet traces to measure the flow
completion times and per-flow packet interarrival times.

Topologies: Due to limitations in a laboratory environ-
ments, we have to content ourselves with a limited set of
topologies. Our experiments are conducted in two different
topologies. In the first one, shown in Figure 4(a), a single
point of congestion is formed, where packets from multiple
TCP flows go through the NetFPGA router, and share a
bottleneck link toward their destinations. Throughout dif-
ferent sets of experiments, we change the size of the output
buffer in the NetFPGA router, and study how the buffer size
affects the utilization and loss rate of the bottleneck link as
well as the flow completion times. As mentioned before,
the necessity of smooth traffic is investigated by changing
the bandwidth of access links in the network. Our second
topology is illustrated in Figure 4(b), where the main traf-
fic (traffic on the bottleneck link) is mixed with some cross
traffic, and is separated from the cross traffic before going
through the bottleneck link. The goal is to determine how
the main traffic is affected by the cross-cut traffic.

In our experiments, we mostly use the dumb-bell shaped
topology. This is typical in the congestion control literature
for two main reasons. First, there is a very small chance of
having more than one point of congestion along any source-
destination path. Once a link on the path is congested,
flows on that path are limited in rate, and thus cannot in-
crease to congest another link along the path. Second, the
client/server nodes and the links connecting them to the bot-
tleneck link in the dumb-bell shaped topology can represent

a path connecting source nodes to the bottleneck link in a
real topology. Based on these two reasons, as well as the dif-
ficulties associated with performing accurate time-sensitive
network experiments, we mainly consider dumb-bell shaped
topology as a representative of more generic networks. How-
ever, we understand the limitations of this approach and
that it may suffer from problems such as those noted in [12].
We hope to study the impact of other topologies with mul-
tiple points of congestion in the future.

Host Setup: In all sets of the experiments, we use TCP
New Reno with the maximum advertised TCP window size
set to 20MB, so that data transferring is never limited by the
window size. The path MTU is 1500 bytes and the servers
send maximum-sized segments. The aggregated traffic goes
to the NetFPGA router over the access links, and from the
router to the client network over the 1Gbps bottleneck link.
The Linux end-hosts and the delay emulator machines are
Dell Power Edge 2950 servers running Debian GNU/Linux
4.0r3 (codename Etch) and use Intel Pro/1000 Dual-port
Gigabit network cards.

3.1.2 Experiment Results

In this section, we provide the results of our experimental
studies on tiny buffers. We report network performance,
including utilization of the bottleneck link, loss rate, and
flow completion times for TCP traffic.

To study the impact of tiny buffers on performance, we
run two sets of experiments, paced and non-paced, using the
topology shown in Figure 4(a) with various router output-
buffer sizes. Slower access network bandwidths are emulated
using PSPacer with flows on a single machine grouped into
classes. All flows belonging to the same class share a single
queue with a service rate set to 200 Mbps. The size of
the queue is chosen to be large enough (5000 packets) that
there are no drops at these queues. Because the router’s
input/output links are 1Gbps, the emulated slow access links
spread out the bursts in the router’s aggregate ingress traffic.
Initially, we observed an increased RTT during the paced
experiments because our method of pacing forces packets
to wait in queues which are serviced at a slower rate. To
make the two cases more comparable we increase the delay
introduced by NISTNet in the non-paced case so that the

�
.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 50 100 150 200 250 300 350 400

Buffer size (pkts)

L
in

k
 U

ti
li
z
a
ti

o
n

1200 Flows-paced

1200 Flows-nonpaced

2400 Flows-paced

2400 Flows-nonpaced
0

1

2

3

4

5

6

0 50 100 150 200 250 300 350 400

Buffer size (pkts)

L
o

s
s
 r

a
te

 (
%

)

1200 Flows-paced

1200 Flows-nonpaced

2400 Flows-paced

2400 Flows-nonpaced

(a) (b)

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

0 50 100 150 200 250 300 350 400

Buffer size (pkts)

A
v

e
ra

g
e

 f
lo

w
 c

o
m

p
le

ti
o

n
 t

im
e

 f
o

r

 .

s
h

o
rt

 f
lo

w
s

 (
s

e
c

)

1200 Flows-paced

1200 Flows-nonpaced

2400 Flows-paced

2400 Flows-nonpaced

0

2

4

6

8

10

12

14

16

0 50 100 150 200 250 300 350 400

Buffer size (pkts)

A
v
e
ra

g
e
 f

lo
w

 c
o

m
p

le
ti

o
n

 t
im

e
 f

o
r

lo
n

g
 f

lo
w

s
 (

s
e
c
)

1200 Flows-paced

1200 Flows-nonpaced

2400 Flows-paced

2400 Flows-nonpaced

(c) (d)

Figure 5: (a) Link utilization as a function of buffer size for paced and non-paced experiments. (b) Loss rate as a function

of buffer size for paced and non-paced experiments. (c) Average flow completion times for short-lived flows. (d) Average flow

completion times for long-lived flows.

RTT is roughly 130 ms in both cases. The results shown
in Figure 5 and analyzed in the following sections are the
average of ten runs. The run time for each experiment is two
minutes. To avoid transient effects, we analyze the collect
traces after a warm-up period of one minute.

For each experiment we change the size of the output
buffer in the NetFPGA router and investigate how the buffer
size affects both the utilization and loss rate of the bottle-
neck link as well as the flow completion times.

Performance: Figure 5(a) shows the effect of changing
the buffer size on the average utilization of the bottleneck
link. The total number of flows sharing the bottleneck link is
1200 and 2400. In both cases, pacing results in significantly
larger utilization when the buffer size is very small – smaller
than 10-50 packets. For example, with 1200 flows, pacing
increases the utilization from about 45% to 65% when the
buffer size is only 10 packets and it increases the utilization
from about 65% to 80% when we have 2400 flows in the
system (The improvement is roughly 20% in both cases).
This difference gets smaller as the buffer size increases.

Note that with 1200 flows, in both paced and non-paced
cases the link utilization does not achieve higher than 65%.
This is the maximum offered load to the link since in this
case the think time and file size distribution parameters do
not create enough active users to saturate the bottleneck link
(we observed that the number of active users is roughly half
the total users). Most of these active users are setting up

many short connections which have very small throughput
(almost about 6 packets per RTT) and thus they cannot
necessarily saturate the link. Assuming that the average
transmission rate is 6 packets per RTT, the total utilization
would be roughly 600 (active) � 6 (packets) � 1500 � 8
(MTU) / 0.130 (RTT) which is only about 330 Mbps. The
plot shows larger amount (about 650 Mbps) because not all
of the flows are this small and hence there are some flows
that are sending at a higher rate.

Another interesting observation is that with paced traffic,
the link utilization appears to be independent of the buffer
size while this is not the case for non-paced traffic. Thus,
with paced traffic, there is no need to increase the buffering
to achieve a certain link utilization.

Interestingly, we observe that in the 2400 flows case, in-
creasing the buffer size makes the paced traffic’s link uti-
lization lower than the non-paced traffic’s. This has already
been observed and reported in [3] and [28]. The main rea-
son is the trade-off between fairness and throughput. In the
case where there are many paced flows and the buffer size is
large, at the point where the buffer is almost full, each flow
is sending paced packets at each RTT. These packets get
mixed with other flows in a paced manner before arriving at
the bottleneck router, and, if the buffer is already full and
number of flows in the network is large, many of flows will
experience a loss event and reduce their congestion window
by half. Although it seems fair that the packet drops should

be spread among many flows, it may cause the bottleneck
link’s utilization to drop. However, with non-paced traffic,
since packets arrive at the bottleneck link in large bursts, a
smaller number of unlucky flows will hit the full buffer, will
experience the loss event, and will reduce their rate. This
is unfair for the few flows that reduce their rate, but it will
keep the link utilization high.

Figure 5(b) compares the loss rate as a function of buffer
size for paced and non-paced traffic. We can see that similar
to link utilization, for paced traffic the loss rate is almost in-
dependent of buffer size, whereas it decreases exponentially
with non-paced traffic. For tiny buffers, there is a notable
reduction in the loss rate for both 1200 and 2400 flow cases.
With 1200 flows, the link is not saturated and hence the
loss rate for paced traffic is always less than 0.01%. How-
ever, with tiny buffers, non-paced traffic experienced around
2% drop in average.

Flow Completion Time: To address the question of
how tiny buffers may affect an individual flow’s completion
time, we collect the start and finish times of all the flows
going through the bottleneck link, and find the average com-
pletion time separately for short and long-lived flows. We
define a short-lived flow to be a flow which never exits the
slow-start mode. Long-lived flows are those which enter the
congestion avoidance mode. We consider flows smaller than
50 KB (roughly 33 packets) as short-lived flows and flows
larger than 1000 KB (roughly 600 packets) as long-lived
flows. If there is no loss, it takes less than 6 RTTs for the
short flows to be completed.

Figures 5(c) and 5(d) show the average flow completion
times for short-lived and long-lived flows, respectively. As
the plots show, with 1200 paced flows, the flow completion
time is independent of the buffer size for both short and
long-lived flows, whereas with non-paced traffic, increasing
the buffer size reduces the flow completion times. In this
case, the flow completion time of the paced traffic is always
smaller than that of the non-paced traffic (for both short-
and long-lived flows) and there is a notable difference be-
tween flow completion times for long-lived flows with tiny
buffers. With 2400 flows, the average flow completion time
of the paced traffic is always less than that of the non-paced
traffic in the tiny buffers region and they are almost equal
with buffers larger than 50 packets.

Cross-cut Traffic: To examine the effect of cross-cut
traffic, we perform a set of experiments with the topology
depicted in Figure 4(b). Each of the four servers communi-
cate with exactly one of the four clients. Figure 6 shows the
four network paths and identifies two of the paths as cross-
cut traffic paths and two as main traffic paths. In the di-
rection of data transmission, each of the bottleneck router’s
two incoming links are shared by one cross-cut traffic path
and one main traffic path, whereas the outgoing links are
not shared. Over different sets of experiments, we change
the characteristics of main and cross-cut flows as well as the
size of the output buffer in the NetFPGA bottleneck router,
and we study the effect of cross-cut traffic on the interarrival
time of packets at the bottleneck queue.

Figure 7(a) and (b) show four CDFs of packet interar-
rival times at the output queue of the bottleneck router, as
reported by the NetFPGA router. Only packets that are
stored in the queue are included in the statistics; packets
dropped at the queue are ignored. In each experiment, there
are at most 2400 simultaneous flows: 1200 main and 1200

Servers

Bottleneck router

Clients

(1)

(2)

(1)

(2)

(3)

(4)

(3)

(4)

Crosscut Traffic

Main Traffic
Delay emulators

Figure 6: Illustration of cross-cut traffic and main traffic

flows.

cross-cut. We run the experiments with the router buffer
size set to 32, 64, 128, 256 and 355 packets, but only the 32
packet case is shown in the figure. The results for the other
buffers sizes are very similar and the minor differences do
not affect the following analysis. Note that the x-axis in the
figure is logarithmic.

The basic case in which no cross-cut traffic nor pacing is
present , illustrated in Figure 7(a), shows that most of the in-
terarrival times are 12µs, which is roughly the transfer time
of MTU sized packets at 1Gbps. Because there are actually
two input links with packets that may be destined to the
same output link, this suggests the traffic on the two input
links is bursty and unsynchronized. The 30% of the inter-
arrival times that are less than 12µs correspond to packets
arriving nearly simultaneously at the two input links.

Comparing Figures 7(a) and 7(b) shows that the addition
of cross-cut traffic is noticeable only when the main traf-
fic is not paced: the two CDFs for paced main traffic in
Figure 7(b) are very similar implying that presence of cross-
traffic has little effect on the distribution of interarrival times
of paced traffic while introducing cross-cut traffic when the
main traffic is not paced, Figure 7(a), produces a pronounced
second step in the CDF.

In the results shown here, the cross-traffic is not artificially
limited or paced. Repeating the experiments and limiting
the transmission rate of the cross-cut senders - to 200Mbps
- does not result in any noticeable change of the results.

3.1.3 Sensitivity to Parameters

In network test-beds, where a handful of computers gen-
erate traffic representing the communication of hundreds or
thousands of actual computers, the configuration of each
traffic generator is critically important. Small changes to
the software or hardware in a test-bed can have a large im-
pact on the generated traffic and the experiment results,
whereas changes to individual machines are unlikely to af-
fect the aggregate traffic at an Internet core router. For an
experiment’s results to be relevant to the Internet’s core, the
validity of the traffic is paramount.

We investigate the effects of various software and hard-
ware parameters in the context of buffer sizing experiments,
and believe some of these parameters require careful tuning
so that the artificially generated traffic mimics the proper-
ties of core network flows. For instance, recent network in-
terface cards have many advanced features that can impact

0

0.2

0.4

0.6

0.8

1

1000 10000 100000

Interarrival Time (nanosecond)

C
D

F

Non-paced main with cross-cut

Non-paced main without cross-cut

0

0.2

0.4

0.6

0.8

1

1000 10000 100000

Interarrival Time (nanosecond)

C
D

F

Paced main with cross-cut

Paced main without cross-cut

(a) (b)

Figure 7: CDF of interarrival times at the output queue of the bottleneck router in cross-cut topology: (a) main traffic is

non-paced, b) main traffic is paced.

the shape of the output traffic, or measurement of various
performance metrics. Due to space limitations we describe
only two such parameters here, which we believe have the
highest impact on our results, and refer the interested reader
to [5].

TCP Segmentation Offload (TSO): With TSO en-
abled, the task of chopping big segments of data into packets
is done on the network card, rather than in software by the
Operating System. The card sends out the group of packets
that it receives from the kernel back to back, creating bursty
and un-mixed traffic. Clearly, this makes the traffic bursty
and highly impacts the results of buffer sizing experiments
in a test-bed. Also, TSO must be disabled if packets are be-
ing paced in software. When TSO was enabled during our
experiments, the gaps between packets added by PSPacer,
described in Section 3.1.1, were only added between the large
groups of packets sent to the network card, and the resulting
traffic on the wire did not have a gap between each packet.
Instead, it contained a group of packets back to back fol-
lowed by a small gap, which was drastically different from
the intended traffic pattern.

Interrupt Coalescing (IC): To lower the CPU’s inter-
rupt servicing overhead, network cards can coalesce the in-
terrupts caused by multiple events into a single interrupt.
With receiver IC enabled, the interarrival time of packets
are changed. The network card will delay delivering packets
to the operating system while waiting for subsequent packets
to arrive. Not only does this affect packet timing measure-
ments, but, due to the feedback in network protocols like
TCP, it can also change the traffic’s shape [19].

3.2 Sprint ATL Experiments
Our second set of tiny buffers experiments is conducted

in collaboration with Sprint ATL. Figure 8 shows the topol-
ogy of the emulated network, which is similar to the setting
considered in tiny buffer sizing model [9]. The core of the ex-
periments is a Juniper T640 router, whose buffers are modi-
fied throughout the study5. The router is connected to four
different networks through four Gigabit Ethernet interfaces.

5We tried several other routers including Cisco GSR 12000,
and Juniper M160. For the buffer sizes we were interested
in this experiment, Juniper T640 seemed to be the most
suitable choice (for details see [15]).

Each cloud in Figure 8 represents one of these networks. The
cloud on the left contains all the users/clients, and the three
clouds on the right hold the servers. Each server belongs
to one of the 99 different subnets (33 for each of the three
server networks). The capacity of the access link connecting
each server to the rest of the network is set to 15Mbps by
default. The requests for file downloads flow from left to
right (from clients to servers), and the actual files are sent
back from right to left. In this direction, the router has three
ingress and one egress line, which means by increasing the
load we are able to create congestion on the link connection
T640 router to the client network.

In practice, the clients and servers are emulated by two
different boxes: Spirent Communications’ Avalanche box
plays the role of clients, and the Reflector box plays the
role of servers (Figure 9). Each box has four Gigabit Eth-
ernet Interfaces. Obviously, we use only one interface from
the Avalanche box, and three interfaces from the Reflector
box to connect the boxes to the T640 router. These links
correspond to core links, and the link connecting the router
to the Avalanche box is the target link. The access links are
emulated by the Reflector box, which allows us to change
the access link capacity to any desired value6. The delay
associated with each access link is also emulated by the Re-
flector box. Since all other link delays are negligible, we can
control the two-way propagation delay of packets by modi-
fying these values. In the Appendix, we explain the results
of evaluation tests on Avalanche’s TCP traffic

Throughout the experiments, we use IPMon systems [1] to
capture the headers of all the packets which go through the
links connecting the router to the Avalanche and Reflector
boxes. These headers are recorded along with high preci-
sion time-stamps. By matching the packet traces on ingress
and egress lines of the router, we can measure the time each
packet has spent inside the router, and thus, we can cal-
culate the time-series representing the queue occupancy of
the router. This also helps us identify any undocumented

6In the Internet, access links are slow on client side. We
found out Avalanche does not enforce rate limitations for
incoming traffic, and had to push slow accesses to the server
side in this experiment so that we can emulate the impact
of slow access links. Avalanche has some other minor timing
issues which are described in the Appendix.

1Gb/s

1Gb/s

1Gb/s

Subnet 1

Subnet 33

1Gb/s
Subnet 34

Subnet 66

Subnet 67

Subnet 99

Juniper T640 Router

Clients

Servers

15Mb/s

Figure 8: Topology of the network used in experiments.

The capacity of core links is 1Gbps, and the capacity of access

links is 15Mbps.

Figure 9: Sprint ATL’s tiny buffer experiment setup.

buffers inside the router. Such buffers could be fixed-delay
buffers (e.g. part of a pipeline, or staging buffers), or could
be additional FIFO queues.

3.2.1 Experiment Results

In this section we study the impact of changing buffer
sizes on network performance. When allowed by our testing
equipment, we also study the effect of changing some other
network properties (like traffic patterns, access link proper-
ties, number of flows, and others) on buffer sizing results.
Due to lack of space, we review some of our results here,
and refer the interested reader to [15] for details.

Performance: We reduce the buffer sizes on the router
from 8500 packets to just 50 packets, and measure the through-
put, drop rate, and delay observed by individual packets as
performance metrics. At 1Gbps line speed, and an RTT
of 50ms, 8500 packets is about twice the bandwidth-delay
product, and 50 packets lies in the range of the tiny buffer
sizing model.

In this experiment we increase the number of users from 0
to 600 during a period of 50 seconds, and keep the number of
users at 600 for 5 minutes, measuring throughput, delay, and
drop rate during this time interval7. Each user downloads
a 1MB file from an ftp server. Once the file download is
completed the user immediately starts downloading another

7The number 600 of users is chosen so that the effective load
of the system is about 100%.

file. The average RTT of the system is 50ms (more precisely
15 +U [0; 20] on each of the forward and reverse paths), and
the capacity of access links connecting servers to the system
is 15Mbps. Both the server and clients have an advertised
congestion window size of 16KB.

Figure 10(a) illustrates throughput as a function of time
for various buffer sizes, and Figure 10(b) represents the av-
erage throughput for different buffer sizes. If we consider
the overhead of packet headers, the maximum throughput
we can get is about 950Mbps. We can see that a buffer size
between 8500 and 922 packets, gives a throughput of about
100%. This is the range between the rule-of-thumb and the
small buffer model. When we push the buffer size to 192,
63, and 50 packets, which is in the range of tiny buffers
model, the throughput goes down by 10%, as predicted the-
oretically. The average level of throughput is maintained
very smoothly throughout the experiments, as seen in Fig-
ure 10(a).

Figure 10(c) shows that on average packets go through a
delay of 155�s to 4.5ms (equivalent to 13 and 375 packets)
for buffer sizes between 50 and 8500 packets. The aver-
age packet delay is considerably smaller than the maximum
buffer size when it is set to 8500 packets. This is very similar
to what we observed in Level 3 Communications’ network.
The average delay increases as the buffer size is increased
from 50 to 1017 packets, and is slightly reduced for 8500
packets. Since the packet drop rate is close to zero when
buffer size is set to 1017 or 8500 packets, we expect these two
to have similar average delays, and the observed reduction
in average delay might be a result of activation/deactivation
of some hidden buffer inside the router.

For buffer sizes between 922 and 8500 packets, the drop
rate is very close to zero (Figure 10(d)). As expected, in
these cases utilization is close to 100%. For smaller buffers
we see a packet drop rate of up to 0.75%; only 0.25% more
than a M/D/1 queue of similar size and arrival rate, con-
firming once more the smoothness of traffic going through
the router.

The impact of increasing network load: In the previ-
ous experiment, parameters were chosen so that the effective
system load is very close to 100%. What happens if we keep
increasing the load? Does the throughput of the network
collapse as a result of congestion? This is a valid concern,
and to find out the answer we perform another set of exper-
iments. This time, we vary the potential load of the system
between 25% and 150% 8. We control the system load by
limiting the access link rates and advertised congestion win-
dow, and by changing the number of end users from 150 to
1200.

Figure 11(a) plots the throughput of the system as a func-
tion of load and various buffer sizes in this scenario. For any
given buffer size increasing the potential load monotonically
increases the throughput. For large buffers, the throughput
reaches 100% (950Mbps) when the potential load is 100%,
and remains at that level for increased potential load. For
smaller buffers, the throughput reaches 90%-95% as we in-
crease the potential load from 25% to 100%, and remains
almost fixed beyond that point. This is good news in the

8The potential load of the system is defined as the utilization
achieved when the bottleneck link capacity is increased to
infinity, and when the throughput is limited by other factors
(like the maximum congestion window size, RTT, and access
link capacities)

0

100

200

300

400

500

600

700

800

900

1000

0 50 100 150 200 250 300 350 400

Time (sec)

T
h
ro

u
g
h
p
u
t

(M
b
/s

)

50 Pkts 63 Pkts 192 Pkts 922 Pkts 8500 Pkts

85

90

95

100

50 63 192 922 1017 8500

Buffer Size (Packets)

A
v
e
ra

g
e
 T

h
ro

u
g

h
p

u
t

(%
)

950

902.

855

807.

A
v
e
ra

g
e
 T

h
ro

u
g

h
p

u
t

(M
b

/s
)

(a) (b)

0

1

2

3

4

5

6

50 63 192 922 1017 8500

Buffer Size (Packets)

D
e
la

y
 (

M
ill

is
e
c
o
n
d
)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

50 63 192 922 1017 8500

Buffer Size (Packets)

D
ro

p
 R

a
te

 (
%

)

(c) (d)

Figure 10: (a) Throughput vs. time for various buffer sizes. (b) Average throughput vs. buffer size. (c) Delay statistics vs.

the buffer size. The red square represents the average delay and the bar represents the standard deviation. (d) Drop rate vs.

buffer size.

sense that we do not see a collapse in throughput as a result
of increased congestion. For a core network a potential load
beyond 100% is very unlikely given that core networks are
usually highly over-provisioned.

Performance as a function of the number of flows:
We would like to see whether the number of flows affects
the performance of the system. We cannot simply modify
the number of flows, since the potential load to the system
changes with the number of flows. To fix this problem, we
adjust the maximum congestion window size to keep the
potential load fixed, when modifying the number of flows in
the network. For 150 flows, the maximum congestion win-
dow size is set to 64KB. As we increase the number of flows
to 300, 600, and 1200, we reduce the maximum congestion
window size accordingly (to 32KB, 16KB, and 8KB). The
buffer size is set to 85 packets in all these experiments.

Figure 11(b) illustrates the changes in network through-
put as we increase the number of flows. When the number
of flows is very low (i.e. 150-300) the system throughput
is significantly less than 100%. Even when we increase the
congestion window size (to increase the potential load), the
system throughput is not significantly increased. This can
be explained by tiny buffer sizing model as follows: when the
number of flows is low, we will not have a natural pacing as
a result of multiplexing, and therefore, the throughput will
not reach 100%9. When the number of flows is large (i.e.

9This problem can be fixed by modifying traffic sources to

600-1200), the system throughput easily reaches 90-95%, in-
dependent of the number of flows.

Increasing the number of flows beyond a few thousand can
result in a significant reduction in throughput, as the aver-
age congestion window size becomes very small (2-3 packets
or even less), resulting in a very high drop rate and poor per-
formance [8, 18]. This problem is not associated with tiny
buffers, and unless we significantly increase the buffer sizes
even more than the rule-of-thumb it would not be resolved.
We believe this is a result of poor network design and in-
creasing the buffer sizes is not the right way to address such
issues.

We also conducted experiments to study the impact of
tiny buffers on performance in the presence of different flow
sizes, various access link capacities, and different distribu-
tions of RTTs. Our results show the performance of a router
with tiny buffers is not highly impacted by changes in these
parameters. For the sake of space, we omit the details and
refer the interested reader to [15].

3.3 Other Tiny Buffer Experiments
Our tiny buffer experiments have been verified indepen-

dently in other test-beds at Alcatel-Lucent Technologies and
Verizon Communications. The only operational network ex-

use Paced TCP. Here we do not have the tools to test this.
The commercial traffic generator which we use does not sup-
port Paced TCP.

0

100

200

300

400

500

600

700

800

900

1000

0 20 40 60 80 100 120 140

Potential Load (%)

T
h
ro

u
g
h
p
u
t

(M
b
/s

)

50 Pkts 63 Pkts 85 Pkts 192 Pkts 922 Pkts

1017 Pkts 8500 Pkts

0

10

20

30

40

50

60

70

80

90

100

0 200 400 600 800 1000 1200

Number of Flows

T
h

ro
u

g
h

p
u

t
(%

)

(a) (b)

Figure 11: (a) Throughput vs. potential load for different buffer sizes. (b) Throughput vs. the number of flows.

periment we have done is performed in collaboration with
Internet2. We reduced the buffer size of a core router down
to 50 packets, while measuring the performance through ac-
tive flow injections and passive monitoring tools. Our mea-
surements of throughput and packet drops did not show any
degradation. We note that Internet2 operates its network at
very low utilization (20-30%); not an ideal setup for buffer
sizing experiments. For more details on these experiments,
we refer the reader to [15].

Again, all these experiments seem to agree with the tiny
buffer sizing model. Clearly, this model has more strict
assumptions compared to the small buffer model, and one
should be extremely careful to make sure the assumptions
hold in an operational network. As discussed in theory, in a
network with slow access links the assumptions seem to be
satisfied. However, not all backbone traffic comes from slow
access links. We conclude that tiny buffer results hold as
long as traffic injected to the network is not overly bursty.

4. CONCLUSIONS
The small buffer model (O(C=

p
N)) appears to hold in

laboratory and operational backbone networks – subject to
the limited number of scenarios we can create. We are suf-
ficiently confident in the O(C=

p
N) result to conclude that

it is probably time, and safe, to reduce buffers in backbone
routers, at least for the sake of experimenting more fully
in an operational backbone network. The tiny buffer size
experiments are also consistent with the theory. One point
that we should emphasize is the importance of the pacing
constraint in tiny buffers experiments. As indicated by the-
ory, pacing can happen as a result of slow access links or by
modifying sources so as to pace the traffic injected to the
network. We find that as long as this constraint is satisfied,
we get a good performance. We also find that some net-
work components (like network interfaces cards) might have
features that reduce pacing along the path. Therefore, one
should be very careful and aware of such details if tiny buffer
sizing result is to be applied in practice.

Acknowledgements

We would like to thank Jean Bolot, Ed Kress, Kosol Jintaser-
anee, James Schneider, and Tao Ye from Sprint Advanced

Technology Lab, Stanislav Shalunov from Internet2, Shane
Amante, Kevin Epperson, Nasser El-Aawar, Joe Lawrence,
and Darren Loher from Level 3 Communications, T.V. Lak-
shman, Marina Thottan from Alcatel-Lucent, Pat Kush, and
Tom Wilkes from Verizon communications for helping us
with these experiments. We would also like to thank Guido
Appenzeller, Sara Bolouki, and Amin Tootoonchian for dis-
cussions and help.

5. REFERENCES

[1] IP monitoring project. http://ipmon.sprint.com/.

[2] NetFPGA project.
http://yuba.stanford.edu/NetFPGA/.

[3] A. Aggarwal, S. Savage, and T. Anderson.
Understanding the performance of TCP pacing. In
Proceedings of the IEEE INFOCOM, pages 1157–1165,
Tel-Aviv, Israel, March 2000.

[4] G. Appenzeller, I. Keslassy, and N. McKeown. Sizing
router buffers. In SIGCOMM ’04, pages 281–292, New
York, NY, USA, 2004. ACM Press.

[5] N. Beheshti, Y. Ganjali, M. Ghobadi, N. McKeown,
J. Naous, and G. Salmon. Time-sensitive network
experiments. Technical Report TR08-SN-UT-04-08-00,
University of Toronto, April 2008.

[6] R. Bush and D. Meyer. Rfc 3439: Some Internet
architectural guidelines and philosophy, December
2002.

[7] M. Carson and D. Santay. Nist net: a linux-based
network emulation tool. SIGCOMM Comput.
Commun. Rev., 33(3):111–126, July 2003.

[8] A. Dhamdhere and C. Dovrolis. Open issues in router
buffer sizing. ACM Sigcomm Computer
Communication Review, 36(1):87–92, January 2006.

[9] M. Enachescu, Y. Ganjali, A. Goel, N. McKeown, and
T. Roughgarden. Routers with very small buffers. In
Proceedings of the IEEE Infocom, Barcelona, Spain,
April 2006.

[10] A. Erramilli, O. Narayan, A. Neidhardt, and I. Saniee.
Performance impacts of multi-scaling in wide area
TCP/IP traffic,. In Proceedings of the IEEE Infocom,

Tel-Aviv, Isreal, March 2000.

[11] A. Feldmann, A. Gilbert, P. Huang, and W. Willinger.
Dynamics of IP traffic: A study of the role of
variability and the impact of control. In Proceedings of
the ACM Sigcomm, Cambridge, Massachusetts,
August 1999.

[12] S. Floyd and E. Kohler. Internet research needs better
models. In Proceedings of HorNets–I, October 2002.

[13] C. Fraleigh, F. Tobagi, and C. Diot. Provisioning IP
backbone networks to support latency sensitive traffic.
In Proceedings of the IEEE Infocom, San Francisco,
California, April 2003.

[14] C. J. Fraleigh. Provisioning Internet Backbone
Networks to Support Latency Sensitive Applications.
PhD thesis, Stanford University, Department of
Electrical Engineering, June 2002.

[15] Y. Ganjali. Buffer Sizing in Internet Routers. PhD
thesis, Stanford University, Department of Electrical
Engineering, March 2007.

[16] V. Jacobson. [e2e] re: Latest TCP measurements
thoughts. Posting to the end-to-end mailing list,
March 7, 1988.

[17] V. Jacobson. Congestion avoidance and control. ACM
Computer Communications Review, pages 314–329,
Aug. 1988.

[18] R. Morris. TCP behavior with many flows. In
Proceedings of the IEEE International Conference on
Network Protocols, Atlanta, Georgia, October 1997.

[19] R. Prasad, M. Jain, and C. Dovrolis. Effects of
interrupt coalescence on network measurements.
Passive and Active Measurements (PAM) conference,
April 2004.

[20] R. Prasad and M. K. Thottan. Inconsistencies with
spirent’s tcp implementation, 2007.

[21] R. S. Prasad and C. Dovrolis. Measuring the
congestion responsiveness of internet traffic. PAM,
2007.

[22] R. S. Prasad, C. Dovrolis, and M. Thottan. Router
buffer sizing revisited: the role of the output/input
capacity ratio. In CoNEXT ’07: Proceedings of the
2007 ACM CoNEXT conference, pages 1–12, New
York, NY, USA, 2007. ACM.

[23] G. Raina and D. Wischik. Buffer sizes for large
multiplexers: TCP queueing theory and instability
analysis. http://www.cs.ucl.ac.uk/staff/D.Wischik
/Talks/tcptheory.html.

[24] V. Ribeiro, R. Riedi, M. Crouse, and R. Baraniuk.
Multiscale queuing analysis of long-range dependent
network traffic. In Proceedings of the IEEE Infocom,
Tel-Aviv, Isreal, March 2000.

[25] J. Sommers and P. Barford. Self-configuring network
traffic generation. In Proceedings of the ACM
SIGCOMM Internet Measurement Conference,
Taormina, Italy, October 2004.

[26] R. Takano, T. Kudoh, Y. Kodama, M. Matsuda,
H. Tezuka, and Y. Ishikawa. Design and evaluation of
precise software pacing mechanisms for fast
long-distance networks. 3rd Intl. Workshop on
Protocols for Fast Long-Distance Networks
(PFLDnet), 2005.

[27] C. Villamizar and C. Song. High performance TCP in

ANSNET. ACM Computer Communications Review,
24(5):45–60, 1994.

[28] M. Wang and Y. Ganjali. The effects of fairness in
buffer sizing. In Networking, pages 867–878, 2007.

APPENDIX

Harpoon Traffic Generation Evaluation: We have run
a large set of experiments to evaluate Harpoon’s TCP traf-
fic. Mainly, we want to verify whether Harpoon’s traffic
– which is generated on a limited number of physical ma-
chines in our test-bed – can model the traffic coming from
a large number of individual TCP sources. If that is the
case, then we should expect to see the same traffic pattern
when a fixed number of flows are generated on one single
machine as when the same number of flows are generated on
multiple physical machines. In particular we want to know
how the flows are intermixed, if a few physical machines are
generating them. Our results show that the aggregate traf-
fic becomes less mixed as the number of physical machines
becomes smaller.

Figure 12 shows the topology of an experiment run to com-
pare the traffic generated by four machines versus the traffic
generated by two machines. In these experiments, a number
of connections are created between each pair of physical ma-
chines (denoted by the same numbers in the figure). In the
first set of experiments, we create a total number of flows
(connections) on four pairs of source-destination machines.
In the second set, we repeat this experiment by creating
the same total number of flows on only two pairs of source-
destination machines (machines numbered 1 and 4 in figure
12), which requires doubling the number of flows generated
by each single machine. The goal is to see how alike the
traffic of the two experiments are. In this setup all links run
at 1Gbps bandwidth, and 100ms delay is added by NISTNet
to the ack packets. All packets are eventually mixed on one
single link (connecting the NetFPGA router to the NISTNet
machine). We do our measurements on this shared link.

Figure 13 compares the percentage of successive packets
(in the aggregate traffic) which belong to the same flow. The
red (darker) bars correspond to the two-source experiment,
and the blue (lighter) bars correspond to the four-source
experiment. The plot shows the results for four different
settings: Buffer size at the shared link being set to 16 and
350 packets, and maximum TCP window size being set to
64KB, and 20MB.

As it can be seen, in all cases packets of individual flows
are less likely to appear successively in the aggregate traffic

1 Data�Packets1

2
2

1
Ethernet�

Switch

3
3 NISTNetNetFPGA

Router

Harpoon�Servers Harpoon�Clients

44

Figure 12: Harpoon Evaluation Topology

20 100 200 400 800
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
e
rc

e
n
ta

g
e
 o

f
S

u
c
c
e
s
s
iv

e
 P

a
c
k
e
ts

TCP Window Size = 20MB
Bottleneck Buffer Size = 350 pkt

Number of Flows
20 100 200 400 800

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
e
rc

e
n
ta

g
e
 o

f
S

u
c
c
e
s
s
iv

e
 P

a
c
k
e
ts

TCP Window Size = 20 MB
Bottleneck Buffer Size = 16 pkt

Number of flows

20 100 200 400 800
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Flows

P
e
rc

e
n
ta

g
e
 o

f
S

u
c
c
e
s
s
iv

e
 P

a
c
k
e
ts

TCP Window Size = 64 KB
Bottleneck Buffer Size = 350 pkt

20 100 200 400 800
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
e
rc

e
n
ta

g
e
 o

f
S

u
c
c
e
s
s
iv

e
 P

a
c
k
e
ts

TCP Window Size = 64 KB
Bottleneck Buffer Size = 16 pkt

Number of Flows

Figure 13: Fraction of successive packets that belong to the same flow versus the total number of flows. Red (darker) bars

correspond to the 2-source experiment, and blue (lighter) bars correspond to the 4-source experiment.

when they are generated by four machines. The difference
between the red and the blue bars grows larger as the num-
ber of total emulated connections increases. The same result
holds when we change the RTT to 50ms and to 150ms.

In most of our buffer sizing experiments with Harpoon
generated traffic, we emulated only a few hundred active
users on a single machine. This traffic would have been bet-
ter mixed (and consequently less bursty), had it come from
individual TCP sources. Nevertheless, we do not see a negli-
gible difference in the drop rate of packets at the bottleneck
link when we change the number of physical machines gen-
erating the traffic.

Avalanche Traffic Generator Evaluation: In [20],
Prasad et al. show some discrepancies with Spirent’s TCP
implementation. The differences they observe are between
flows generated by Spirent’s traffic generator and those by
NewReno TCP with SACK implemented in Linux 2.6.15.
The main problems documented in [20] are the followings:
Firstly, it has been observed that Spirent’s TCP does not do
fast retransmit when the receiver window size is larger than
a certain value. Secondly, TCP implementation of Spirent
has implemented SACK or NewReno modifications. And
finally, the RTO estimation is not consistent and does not
seem to confirm to RFC 2988.

We evaluated the Avalanche/Reflector boxes to see if they
generate accurate TCP Reno traffic. We started with a sin-
gle TCP flow, then changed several parameters (link capac-
ity, delay, congestion window size, packet drop rate, etc.)
and manually studied the generated traffic. We concluded
that packet injection times are accurate, except for a differ-
ence of up to 120�s (which can be attributed to processing
times and queueing delays in the traffic generators). We also
compared the traffic patterns generated by the Avalanche
/Reflector boxes with patterns generated by the ns-2 simu-

lator in carefully designed scenarios. While ns-2 is known to
have problems of its own, we wanted to identify differences
between experimental results and simulation. We found mi-
nor differences between ns-2 and Avalanche output traffic.
However, we believe these differences do not have any im-
pact on buffer sizing experiments10.

10These difference were reported to Spirent Communications,
and some of them have been resolved in their current sys-
tems. We are working with them to resolve the remaining
issues.

